首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   4篇
  国内免费   2篇
化学   105篇
力学   7篇
数学   19篇
物理学   15篇
  2023年   3篇
  2022年   1篇
  2021年   8篇
  2020年   4篇
  2019年   11篇
  2018年   10篇
  2017年   8篇
  2016年   8篇
  2015年   4篇
  2014年   6篇
  2013年   8篇
  2012年   10篇
  2011年   11篇
  2010年   7篇
  2009年   7篇
  2008年   6篇
  2007年   10篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有146条查询结果,搜索用时 218 毫秒
31.
The aim of the recent research was to investigate the anti-breast cancer effects of silver nanoparticles using Phoenix dactylifera seed ethanolic extract (AgNPs). After preparation of Phoenix dactylifera seed extract, GC/MS was performed to detect the compounds. The findings indicated that 9-Octadecenoic acid (Z)- methyl ester (40.95%) and Dodecanoic acid methyl ester (20%) were the most frequent constituents found in P. dactylifera. These nanoparticles were spherical with a size range of 17-19 nm and characterized using various analytical techniques including UV–Vis absorption spectroscopy to determine the presence of AgNPs in the solution. We studied functional groups of P. dactylifera extract in the reduction and capping process of AgNPs by FT-IR, crystallinity and FCC planes by X-ray diffraction (XRD) pattern and surface morphology, shapes, and size of AgNPs by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). DPPH free radical scavenging test was used to test the antioxidant properties of P. dactylifera and AgNPs, which revealed high antioxidant potential similar to butylated hydroxy toluene (BHT) as the positive control. The results of cytotoxicity analysis indicated that P. dactylifera and AgNPs were toxic for MCF-7 cells. In vivo design, induction of breast cancer was done by 7,12-Dimethylbenz[a] anthracene (DMBA) in 50 animals. After 10 days, the animals were randomly divided into six subgroups, including healthy control, untreated control, two groups receiving the P. dactylifera at 2 and 6 mg/kg and two groups receiving the AgNPs at 2 and 6 mg/kg concentrations. Both doses of P. dactylifera and AgNPs (especially AgNPs6) significantly (p ≤ 0.05) reduced the weight and volume of liver, mammary gland, kidney, spleen, ALP, AST, ALT, GGT, cholesterol, LDL, triglyceride, total and conjugated bilirubin, urea, creatinine, glucose, ferrous, ferritin, erythropoietin, GR, IL1, IL6, IL12, IL18, IFNY, and TNFα and increased HDL, total protein, albumin, WBC, lymphocyte, neutrophils, platelet, RBC, Hb, PCV, MCV, MCH, MCHC, SOD, CAT, GPx, IL4, IL5, IL10, IL13, and IFNα compared to the untreated group. Moreover, P. dactylifera and AgNPs (especially AgNPs6) significantly (p ≤ 0.05) treated breast cancer with reduction of organs free of metastasis compared to the untreated group. Seemingly, the AgNPs can be used for the treatment of breast cancer.  相似文献   
32.
Taking advantage of computational chemistry, the best diamine for the synthesis of a multi‐dentate ligand from the reaction with 3‐(trimethoxysilyl) propylisocyanate (TEPI) was selected. Actually, predictive Density Functional Theory (DFT) calculations provided the right diamino chain, i.e. ethylenediamine, capable to sequester a palladium atom, together with the relatively polar solvent toluene, and then undergo the experiments as a selective catalytic agent. The ligand was then prepared and applied for the decoration of the halloysite (Hal) outer surface to furnish an efficient support for the immobilization of Pd nanoparticles. The resulting catalyst exhibited high catalytic activity for hydrogenation of nitroarenes. Moreover, it showed high selectivity towards nitro functional group. The study of the catalyst recyclability confirmed that the catalyst could be recycled for several reaction runs with only slight loss of the catalytic activity and Pd leaching. Hot filtration test also proved the heterogeneous nature of the catalysis.  相似文献   
33.
In-cuvette mixing and titration techniques have been used for the kinetic determination of sulfide based on its inhibition effect on the oxidation of indigo carmine with hexacyanoferrate(III) in the presence of silver. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of indigo carmine at 612 nm. Both initial rate and fixed-time methods were applied to the in-cuvette technique. Using in-cuvette mixing, sulfide up to 1800 ng was determined and detection limit and relative standard deviation for the determination of 120 ng of sulfide were calculated as 23.0 ng and 1.59%, respectively. On the basis of the titration technique, the upper limit of determination was 25 μg of sulfide and detection limit and average relative standard deviation for the determination of 1 μg of sulfide were 0.025 μg and 4.95%, respectively. The effect of foreign ions on the sulfide determination was studied. The proposed methods were applied to the determination of sulfide in water.  相似文献   
34.
Prussian blue modified carbon ionic liquid electrodes (PB‐CILEs) were fabricated using chemical and electrochemical procedures. Chemically fabricated PB‐CILE exhibited an excellent sensitivity (0.0866 μA μM?1), low detection limit (0.01 μM) and two linear ranges (0.01–1 and 1–600 μM) toward hydrogen peroxide. Then, glucose oxidase (GOx) was immobilized on the surface of PB‐CILE to fabricate glucose biosensor using three different procedures involving cross linking with glutaraldehyde (GLU) and bovine serum albumin (BSA), entrapment into the Nafion matrix and covering with a sol‐gel layer. Glucose biosensor fabricated using cross linking procedure showed the best sensitivity (0.0019 μA μM?1) and operational stability for glucose.  相似文献   
35.
A flow injection system coupled with two simple and sensitive chemiluminescence (CL) methods is described for the determination of some phenolic compounds. The methods are based on the inhibition effects of the investigated phenols on the CL signal intensities of N-chlorosuccinimide-KI-luminol (NCS-KI-luminol) and NCS-luminol systems. The influences of the chemical and hydrodynamic parameters on the decrease in CL signal intensities of NCS-KI-luminol and NCS-luminol systems for hydroquinone, catechol, and resorcinol, serving as the model compounds of analyte, were studied in the flow injection mode of analysis. Under the selected conditions, the proposed CL systems were used for the determination of some phenolic compound and analytical characteristics of the systems including calibration equation, correlation coefficient, linear dynamic range, limit of detection, and sample throughput. The limits of detection for hydroquinone, catechol, and resorcinol were 0.002, 0.01, and 0.3 μM using the NCS-KI-luminol system; for the NCS-luminol system these were 0.01, 0.17, and 1.6 μM, respectively. The relative standard deviation for 10 repeated measurements of 0.04, 0.06, and 1 μM of hydroquinone, catechol, and resorcinol were 1.9, 1.4, and 2.0%, respectively, with the NCS-KI-luminol system; for 0.2, 0.5, and 4 μM of hydroquinone, catechol, and resorcinol these were 2.6, 2.2, and 3.7%, respectively, using the NCS-luminol system. The method was applied to the determination of catechol in known environmental water samples with a relative error of less than 6%. A possible reaction mechanism of the proposed CL system is discussed briefly.   相似文献   
36.
There is a lack of fundamental knowledge about the scale up of biosurfactant production. In order to develop suitable technology of commercialization, carrying out tests in shake flasks and bioreactors was essential. A reactor with integrated foam collector was designed for biosurfactant production using Bacillus subtilis isolated from agricultural soil. The yield of biosurfactant on biomass (Y p/x), biosurfactant on sucrose (Y p/s), and the volumetric production rate (Y) for shake flask were obtained about 0.45 g g−1, 0.18 g g−1, and 0.03 g l−1 h−1, respectively. The best condition for bioreactor was 300 rpm and 1.5 vvm, giving Y x/s, Y p/x, Y p/s, and Y of 0.42 g g−1, 0.595 g g−1, 0.25 g g−1, and 0.057 g l−1 h−1, respectively. The biosurfactant maximum production, 2.5 g l−1, was reached in 44 h of growth, which was 28% better than the shake flask. The obtained volumetric oxygen transfer coefficient (K L a) values at optimum conditions in the shake flask and the bioreactor were found to be around 0.01 and 0.0117 s−1, respectively. Comparison of K L a values at optimum conditions shows that biosurfactant production scaling up from shake flask to bioreactor can be done with K L a as scale up criterion very accurately. Nearly 8% of original oil in place was recovered using this biosurfactant after water flooding in the sand pack.  相似文献   
37.
Haghighi B  Kurd SF 《Talanta》2004,64(3):688-694
A flow injection method on the basis of gas phase molecular absorption is described for the sequential determination of ammonium and nitrate. Two hundred microliters of sample solution is injected into the flow line. For ammonium determination, the sample zone is directed to a line in which reacts with NaOH (13 M) and produces ammonia. But for nitrate determination, the sample zone is passed through the on-line copperized zinc (Zn/Cu) reduction column and produces ammonium ion and in the follows ammonia. The produced ammonia in both cases is purged into the stream of N2 carrier gas. The gaseous phase is separated from the liquid phase using a gas-liquid separator and then is swept into a flow through cell, which has been positioned in the cell compartment of an UV-Vis spectrophotometer. The absorbance of the gaseous phase is measured at 194 nm. Under selected conditions for sequential analysis of ammonium and nitrate, linear relations were found between the peak heights of absorption signals and concentrations of ammonium (10-650 μg ml−1) and nitrate (20-800 μg ml−1). The limit of detections for ammonium and nitrate analysis were 8 and 10 μg ml−1, respectively. The relative standard deviations of repeated measurements of 50 μg ml−1 of ammonium and nitrate were 2.0, 2.9%, respectively. Maximum sampling rate was about 40 samples/h. The method was applied to the determination of ammonium in pharmaceutical products and the sequential determination of ammonium and nitrate in spiked water samples.  相似文献   
38.
Preparation and Properties of Tetragonal α-Di(phthalocyaninato(1?))praseodymium(III)-polyhalides; Crystal Structure of α-[Pr(Pc?)2]Br1.5 Brown red di(phthalocyaninato(1?))-praseodym(III)-polyhalides [Pr(Pc?)2]Xy (X = Br, I) of variable composition (1 ≤ y ≤ 2.5) are formed by (electro)chemical oxidation of [Pr(Pc2?)2]?. The thermical decomposition of these polyhalides at 250°C yields partially oxidized, green α-[PrPc?Pc2?]. Due to strong spin–spin coupling of the phthalocyanin-π-radicals only PrIII contributes to the magnetic moment of ca. 3.0 B.M. for all complexes. Green metallic prisms of [Pr(Pc?)2]Br1.5 crystallize in the tetragonal α-modification: space group P4/nnc with a = 19.634(5) Å, c = 6.485(2) Å; Z = 2. In the sandwich complex PrIII is eightfold coordinated by the isoindoline N-atoms of the two staggered (41°), nearly planar Pc?- ligands. The quasi-onedimensional character of the structure along [001] is due to the infinite columns of Pc? ligands. The superperiod along [001] is a consequence of the distribution of the Pr atoms onto two incompletely filled crystallographic positions at a distance of c/2 and the disordered chains of the bromine atoms extending in the same direction. Powder diffractograms of Pr(Pc )2Br2, [Pr(Pc?)2]I2 und [PrPc Pc2?] confirm the tetragonal α-modification of these complexes, too. The content of tribromide correlates with the population of the Pr(2)-site. In the UV-VIS-NTR absorption spectrum of a thin film of Pr(Pc )2Br, the intense bands at 13.9 and 19.5 kK are assigned to the B and Q transition, respectively. The D band at 9. kK is characteristic for isolated dimeric Pc?-π-radicals. Due to increasing electron delocalisation as a result of the growing columns the D band is shifted to lower energy appearing successively at 6.05 and 3.3 kK. The mir and resonance Raman (RR) spectra of α-[Pr(Pr?)2]Xy, (X = Br, I) show the well known diagnostic bands for Pc?-π-radicals. Thc RR spectrum of the polyiodide is dominated by the overtone progression of the totally symmetric (I-I) stretching vibration of the triiodide at 108cm?1. The FT-Raman spectra are also marked by the totally symmetric stretching vibration of the polyhalides (Br3 : 145cm 1; 13?:105cm?1; I5? 151 cm?1).  相似文献   
39.
Fungal laccase (Lc) from the basidiomycete Trametes hirsuta was immobilized on top of a carbon ceramic electrode using physical absorption. Direct, unmediated heterogeneous electron transfer between Lc and the carbon ceramic electrode (CCE) under aerobic conditions was shown. The bioelectrocatalytic reduction of oxygen on Lc‐CCE started at about 430 mV vs. Ag|AgCl|KClsat at pH 3.5 and moved with about 57 mV in the cathodic region per pH unit. The Lc‐modified CCE was then used as a biosensing detection element in a single line flow injection system for the amperometric determination of a variety of phenolic substrates of the enzyme. The experimental conditions were studied and optimized for catechol serving as a model compound. Statistical aspects were applied and the sensor characteristics and Michaelis‐Menten constants of the investigated phenolic compounds were calculated and compared with those obtained for solid graphite electrodes modified with Trametes hirsuta laccase. The results showed that the CCE based biosensor in comparison with the solid graphite based biosensor offers a lower detection limit, a wider linear dynamic range, and excellent operational stability with no sensor passivation, indicating that the sol–gel lattice improves the electrochemical behavior of the biosensor.  相似文献   
40.
Spectrographic graphite electrodes were modified through adsorption with laccase from Trametes versicolor. The laccase-modified graphite electrode was used as the working electrode in an amperometric flow-through cell for monitoring phenolic compounds in a single line flow injection system. The experimental conditions for bioelectrochemical determination of catechol were studied and optimized. The relative standard deviation of the biosensor for catechol (10 μM, n=12) was 1.0% and the reproducibility for six laccase-modified graphite electrodes, prepared and used different days was about 11%. The optimal conditions for the biosensor operation were: 0.1 M citrate buffer solution ( at pH 5.0), flow rate of 0.51 ml min−1 and a working potential of −50 mV versus Ag|AgCl. At these conditions the responses of the biosensor for various phenolic compounds were recorded and the sensor characteristics were calculated and compared with those known for biosensors based on laccase from Coriolus hirsutus, cellobiose dehydrogenase (CDH) from Phanerochaete chrysosporium and horseradish peroxidase (HRP).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号