首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   809篇
  免费   22篇
  国内免费   3篇
化学   576篇
晶体学   5篇
力学   10篇
数学   154篇
物理学   89篇
  2020年   8篇
  2019年   11篇
  2018年   10篇
  2017年   7篇
  2016年   25篇
  2015年   21篇
  2014年   14篇
  2013年   27篇
  2012年   32篇
  2011年   39篇
  2010年   39篇
  2009年   19篇
  2008年   50篇
  2007年   54篇
  2006年   55篇
  2005年   43篇
  2004年   28篇
  2003年   31篇
  2002年   23篇
  2001年   12篇
  2000年   15篇
  1999年   5篇
  1998年   7篇
  1997年   10篇
  1996年   13篇
  1994年   5篇
  1993年   7篇
  1992年   10篇
  1991年   10篇
  1990年   5篇
  1989年   12篇
  1988年   6篇
  1987年   4篇
  1985年   4篇
  1984年   11篇
  1983年   10篇
  1982年   15篇
  1981年   8篇
  1980年   10篇
  1979年   11篇
  1978年   11篇
  1977年   8篇
  1976年   4篇
  1975年   6篇
  1974年   13篇
  1973年   11篇
  1972年   5篇
  1970年   7篇
  1968年   4篇
  1964年   5篇
排序方式: 共有834条查询结果,搜索用时 31 毫秒
771.
The influence of pH on the redox properties of cytochrome c (cyt c) adsorbed on roughened silver electrodes chemically modified with a self-assembled monolayer (SAM) of 11-mercapto-1-undecanoic acid (MUA) was studied with voltammetric techniques in combination with surface-enhanced resonance Raman scattering (SERRS). The experiments were performed simultaneously on the same electrode sample in a homemade spectroelectrochemical cell suitable for such applications. At pH 7.0 cyt c was found in its native state; at higher pH values (ranging from 8.0 to 9.0) the redox properties of the adsorbed protein varied considerably, featuring a redox behavior which does not resemble the one reported for the alkaline transition. Our results instead indicate the presence of an electrochemically inactive 6cLS species immobilized on MUA at pH 9.0. The pH-induced conformational changes observed for cyt c immobilized on the SAM of MUA were found to be repeatable and chemically reversible, meaning that the recovery of the electrochemical signal due to the native protein occurred instantaneously (on the second time scale) when the electrode was switched back to pH 7.0. The pH-induced changes observed were attributed to a conformational change involving a heme reorientation with respect to the electrode surface.  相似文献   
772.
773.
We report on a series of computer simulations that have been made to explore the operation and performance limits of a periodically heated and cooled trapping segment (liquid analog of the modulator device used in GC×GC) interfacing the separation column and the detector. The initial peak width and the retention of the molecules on the trapping segment have the most important influence on the trapping efficiency. Higher retention of the trapping segment and smaller peaks will lead to higher signal enhancements. However when the resulting concentration gradients become too large, as is the case for very small peaks and/or for very high retention factors on the trapping segment, the dispersion will strongly decrease the focussing efficiency. The molar diffusion coefficient and the linear velocity mainly have an impact on the dispersive behaviour, which can be directly calculated from the associated plate height values. General design rules for the trapping segment, validated with the computer simulations, give a good estimate of the required trapping time and the length of the trapping segment. Equations for the estimation of the trapped peak width and signal enhancement are also given.  相似文献   
774.
A novel kind of fluoroelastomer nanocomposites based on tube-like halloysite clay mineral were successfully prepared using a bis-phenol curing system, which resulted in prominent improvements in mechanical and dynamic mechanical properties and in the elevation as high as 30 K of the thermal decomposition temperature. Wide-angle X-ray scattering and transmission electron microscopy techniques were employed to assess the morphology developed in the nanocomposites, while stress strain diagrams were used to evaluate the mechanical properties. These nanocomposites were further characterized by moving die rheometer, dynamic mechanical properties and thermo-gravimetric analysis. Structure-properties relationship and the improvement of the mechanical, dynamic mechanical and thermal properties of fluoroelastomers are reported in the present study. Increasing amount of the filler reduced the curing efficiency of the bis-phenol curing system, which was evident from the rheometric and physical properties of the resulting composites. A sort of filler–filler interaction was perceived during the strain sweep analysis of the composites. The polymer–filler interaction was reflected in the improved mechanical and thermal properties which were the consequence of proper dispersion of the nanotubes in the polymer matrix; whereas the intercalation of macromolecular chains into the nanotubes was not reflected in the X-ray diffraction analysis.  相似文献   
775.
Using the permeability analogue of the diffusion and partitioning processes occurring in a chromatographic column, the different Effective Medium Theory (EMT) models that exist in literature for the electrical and thermal conductivity have been transformed into expressions that accurately predict the B-term band broadening in chromatographic columns. The expressions are written in such a form that they hold for both fully porous and porous-shell particles, and both spherical and cylindrical particles are considered. Mutually comparing the established EMT-expressions, it has been found that the most basic variant, i.e., the Maxwell-based expression, is already accurate to within 5% for the typical conditions encountered in liquid phase chromatography, independently of the exact microscopic morphology of the packing. For most typical values of the intra-particle diffusion rate and the species retention factors, it is even accurate to within 1%. If even higher accuracies are needed, more elaborate EMT-expressions are available. The modelling accuracy of all explicit EMT-expressions is much better than the residence time weighted (RTW) B-term expressions that have been used up to now in the field of chromatography, where the error is typically on the order of 10% and more. The EMT-models have also been used to establish expressions for the obstruction and tortuosity factor in packings of non-porous particles. The EMT has also been applied to the meso-porous zone only, yielding an expression for the intra-particle diffusion coefficient that can be used without having to specify any obstruction factor. It has also been shown that the EMT also provides a very simple but exact expression to represent the way in which the solid core obstructs the effective intra-particle diffusion in the case of porous-shell particles. This obstruction factor is given by γ(part)=2/(2+ρ3) for spherical particles and γ(part)=1/(1+ρ3) for cylinders. Back-transforming the obtained expressions, a set of simple explicit expressions has been obtained that allow to directly obtain the intra-particle diffusion coefficient (D(part)) from peak parking or B-term constant measurements. Using these expressions, it could be demonstrated that the traditionally employed RTW-model yields D(part)-values that display an erroneous retention factor dependency, even in cases where the RTW-model appears to be able to closely fit the peak parking measurements.  相似文献   
776.
The results of a numerical simulation study of the diffusion and retention in fully porous spheres and cylinders are compared with some of the high order accuracy analytical solutions for the effective diffusion coefficient that have been derived from the effective medium theory (EMT) theory in part I of the present study. A variety of different ordered (spheres and cylinders) and disordered (cylinders) packings arrangements has been considered. The agreement between simulations and theory was always excellent, lying within the (very tight) accuracy limits of the simulations over the full range of retention factor and diffusion constant values that is practically relevant for most LC applications. Subsequently filling up the spheres and cylinders with a central solid core, while keeping the same packing geometry and the same mobile phase (same thermodynamic retention equilibrium), it was found that the core induces an additional obstruction which reduces the effective intra-particle diffusion coefficient exactly with a factor γ(part)=2/(2+ρ3) for spherical particles and γ(part)=1/(1+ρ2) for cylinders (ρ is the ratio of the core to the particle diameter, ρ=d(core)/d(part)). These expressions hold independently of the packing geometry, the value of the diffusion coefficients and the equilibrium constant or the size of the core. The expressions also imply that, if considering equal mobile phase conditions, the presence of the solid core will never reduce the particle contribution to the B-term band broadening with more than 33% (50% in case of cylindrical pillars).  相似文献   
777.
The metal complexation properties of the naturally occurring Maillard reaction product isomaltol HL(2) are investigated by measurement of its stability constants with copper(II), zinc(II), and iron(III) using potentiometric pH titrations in water, by structural and magnetic characterization of its crystalline complex, [Cu(L(2))(2)]·8H(2)O, and by density functional theory calculations. Strong complexation is observed to form the bis(isomaltolato)copper(II) complex incorporating copper in a typical (pseudo-)square-planar geometry. In the solid state, extensive intra- and intermolecular hydrogen bonding involving all three oxygen functions per ligand assembles the complexes into ribbons that interact to form two-dimensional arrays; further hydrogen bonds and π interactions between the furan moiety of the anionic ligands and adjacent copper(II) centers connect the complexes in the third dimension, leading to a compact polymeric three-dimensional (3D) arrangement. The latter interactions involving copper(II), which represent an underappreciated aspect of copper(II) chemistry, are compared to similar interactions present in other copper(II) 3D structures showing interactions with benzene molecules; the results indicate that dispersion forces dominate in the π system to chelated copper(II) ion interactions.  相似文献   
778.
This article discusses the requirements for reference materials (RMs) for measuring the size of nanoparticles (NPs). Such RMs can be used for instrument calibration, statistical quality control or interlaboratory comparisons. They can come in the form of suspensions, powders or matrix-embedded materials [i.e. NPs integrated in a natural matrix (e.g., food, soil, or sludge)].At present, uncertainty about the most suitable form of material, the most relevant measurands and the most useful metrological-traceability statement inhibits the production of NP RMs. In addition, the lack of validated methods and qualified laboratories to produce NP RMs present formidable challenges.Metal, inorganic and organic NPs are available, but most of them are intended to be laboratory chemicals. With the exception of latex materials, certified RMs are not available, although some metrology institutes have started to develop such materials for colloidal gold and silica particles.  相似文献   
779.
We report upon the experimental investigation of the heat transfer in low thermal mass LC (LTMLC) systems, used under temperature gradient conditions. The influence of the temperature ramp, the capillary dimensions, the material selection and the chromatographic conditions on the radial temperature gradients formed when applying a temperature ramp were investigated by a numerical model and verified with experimental temperature measurements. It was found that the radial temperature gradients scale linearly with the heating rate, quadratically with the radius of the capillary and inversely to the thermal diffusivity. Because of the thermal radial gradients in the liquid zone inside the capillary lead to radial viscosity and velocity gradients, they form an additional source of dispersion for the solutes. For a temperature ramp of 1 K/s and a strong temperature dependence of the retention of small molecules, the model predicts that narrow-bore columns (i.d. 2.1 mm) can be used. For a temperature ramp of 10 K/s, the maximal inner diameter is of the order of 1 mm before a substantial increase in dispersion occurs.  相似文献   
780.
We report on the optimization of nano‐LC gradient separations of proteomic samples that vary in complexity. The gradient performance limits were visualized by kinetic plots depicting the gradient time needed to achieve a certain peak capacity, while using the maximum system pressure of 80 MPa. The selection of the optimal particle size/column length combination and corresponding gradient steepness was based on scouting the performance of 75 μm id capillary columns packed with 2, 3, and 5 μm fully porous silica C18 particles. At optimal gradient conditions, peak capacities up to 500 can be obtained within a 120 min gradient using 2 μm particle‐packed capillary columns. Separations of proteomic samples including a cytochrome c tryptic digest, a bovine serum albumin tryptic digest, a six protein mix digest, and an Escherichia coli digest are demonstrated while operating at the kinetic‐performance limit, i.e. using 2‐μm packed columns, adjusting the column length and scaling the gradient steepness according to sample complexity. Finally, good run‐to‐run retention time stability (RSD values below 0.18%) was demonstrated applying ultra‐high pressure conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号