首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   2篇
化学   161篇
力学   1篇
数学   14篇
物理学   20篇
  2023年   3篇
  2022年   3篇
  2021年   17篇
  2020年   8篇
  2019年   2篇
  2018年   5篇
  2017年   5篇
  2016年   7篇
  2015年   7篇
  2014年   11篇
  2013年   13篇
  2012年   16篇
  2011年   17篇
  2010年   12篇
  2009年   4篇
  2008年   10篇
  2007年   8篇
  2006年   6篇
  2005年   7篇
  2004年   8篇
  2003年   3篇
  2002年   5篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1996年   2篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
排序方式: 共有196条查询结果,搜索用时 343 毫秒
71.
Zein, a corn-derived protein, has a variety of applications ranging from drug delivery to tissue engineering and wound healing. This work aims to develop a biocompatible scaffold for dermal applications based on thermally annealed electrospun propolis-loaded zein nanofibers. Pristine fibers' biocompatibility is determined in vitro. Next, propolis from Melipona quadrifasciata is added to the fibers at different concentrations (5% to 25%), and the scaffolds are studied. The physicochemical properties of zein/propolis precursor dispersions are evaluated and the results are correlated to the fibers' properties. Due to zein's and propolis' very favorable interactions, which are responsible for the increase in the dispersions surface tension, nanometric size ribbon-like fibers ranging from 420 to 575 nm are obtained. The fiber's hydrophobicity is not dependent on propolis concentration and increases with the annealing procedure. Propolis inhibitory concentration (IC50) is determined as 61.78 µg mL−1. When loaded into fibers, propolis is gradually delivered to cells as Balb/3T3 fibroblasts and are able to adhere, grow, and interact with pristine and propolis-loaded fibers, and cytotoxicity is not observed. Therefore, the zein–propolis nanofibers are considered biocompatible and safe. The results are promising and provide prospects for the development of wound-healing nanofiber patches—one of propolis' main applications.  相似文献   
72.
Healing of tendon ruptures represents a major challenge in musculoskeletal injuries and combinations of biomaterials with biological factors are suggested as viable option for improved healing. The standard approach of repair by conventional suture leads to incomplete healing or rerupture. Here, a new elastic type of DegraPol® (DP), a polyester urethane, is explored as a delivery device for platelet‐derived growth factor—BB (PDGF‐BB) to promote tendon healing. Using emulsion electrospinning as an easy method for incorporation of biomolecules within polymers, DegraPol® supports loading and release of PDGF‐BB. Morphological, mechanical and delivery device properties of the bioactive DP scaffolds, as well as differences arising due to different electrospinning parameters are studied. Emulsion electrospun DP scaffolds result in thinner fibers than pure DP scaffolds and experience decreased strain at break [%], but high enough for successful surgeon handling. PDGF‐BB is released in a sustained manner from emulsion electrospun DP, but not completely, with still large amount of it being inside the polymeric fibers after 30 d. In vitro studies show that the bioactive scaffolds promote tenocyte proliferation in serum free and serum+ conditions, demonstrating the potential of this surgeon‐friendly bioactive delivery device to be used for tendon repair.

  相似文献   

73.
A new lipophilic gadolinium chelate consisting of a long aliphatic chain bound to the AAZTA coordination cage (Gd-AAZTAC17) has been synthesised. It possesses two coordinated water molecules (q=2) in fast exchange with the solvent (tau298(M) = 67 ns), which yields a relaxivity of 10.2 mM(-1) s(-1). At concentrations greater than 0.1 mM, it forms micelles (average diameter 5.5 nm) characterised by a relaxivity of approximately 30 mM(-1) s(-1) at 20 MHz and 298 K. The latter value appears to be "quenched" by magnetic interactions among the Gd(III) ions on the surface of the micelle that cause a decrease in the electronic relaxation time. A relaxivity of 41 mM(-1) s(-1) was recorded for this micellar system when 98 % of the Gd(III) ions were replaced by diamagnetic Y(III). Gd-AAZTAC17 exhibits a better affinity for fatted human serum albumin (HSA) than for defatted HSA, whereas the relaxivities of the supramolecular adducts are reversed. The relaxivity shown by Gd-AAZTAC17/defatted HSA ({r b(1) (20 MHz, 298 K)=84 mM(-1) s(-1)) is by far the highest relaxivity reported so far for non-covalent paramagnetic adducts with slow-moving substrates. As shown by molecular docking calculations, the gadolinium complex enters a hydrophobic pocket present in fatted HSA more extensively than the corresponding adduct with defatted HSA. Interestingly, no marked difference was observed in either the relaxation enhancement or the binding affinity between fatted and defatted HSA when the binding titrations were carried out at a Gd-AAZTAC17 concentration higher than its critical micellar concentration (cmc). This behaviour has been attributed to the formation of an association between the negatively charged micelle of the lipophilic metal complexes and the positive residues on the surface of the protein.  相似文献   
74.
A new acylated flavonoid, 6,4'-dimethoxyquercetin-3-O-beta-D-6'[3,4,5-trihydroxy (E)-cinnamoyl]glucopyranoside, and a naphthopyranone dimer, named eriocauline, together with 2 other known flavonoids, 6-methoxyapigenin-7-O-beta-D-glucopyranoside and 6-methoxyapigenin-7-O-beta-D-allopyranoside, have been isolated from the capitulae of Eriocaulon ligulatum. The compounds were identified using spectroscopic methods (HR-ESI-MS, and 1-D and 2-D NMR). The methanol extract exhibited mutagenic activity in the Salmonella/microsome assay, in strains TA100, TA97a and TA102 and for dichloromethane extract tested in strain TA98.  相似文献   
75.
Lipid nanoparticles based on multiple emulsion (W/O/W) systems are suitable for incorporating hydrophilic active substances, including iridoid glycosides. This study involved optimization of composition of lipid nanoparticles, incorporation of active compounds (aucubin and catalpol), evaluation of stability of the resulting nanocarriers, and characterization of their lipid matrix. Based on 32 factorial design, an optimized dispersion of lipid nanoparticles (solid lipid:surfactant—4.5:1.0 wt.%) was developed, predisposed for the incorporation of iridoid glycosides by emulsification-sonication method. The encapsulation efficiency of the active substances was determined at nearly 90% (aucubin) and 77% (catalpol). Regarding the stability study, room temperature was found to be the most suitable for maintaining the expected physicochemical parameter values (particle size < 100 nm; polydispersity index < 0.3; zeta potential > |± 30 mV|). Characterization of the lipid matrix confirmed the nanometer size range of the resulting carriers (below 100 nm), as well as the presence of the lipid in the stable β’ form.  相似文献   
76.
A two-compartment Plexiglas cell has been set up and tested for separate hydrogen and oxygen production from photocatalytic water splitting on a thin TiO2 layer deposited by magnetron sputtering on a flat Ti electrode inserted between the two cell compartments.  相似文献   
77.
This paper reveals, for the first time, the functional properties of propolis from an extreme region of Argentine (El Rincón, Province of Catamarca, Argentina), as well as the isolation and identification of bioactive compounds. The antioxidant activity was determined by the ABTS method and beta-carotene bleaching. The antibacterial activity was determined on methicillin resistant Staphylococcus aureus (MRSA) by the microdilution method and bioautographic assays. Twelve compounds were isolated and identified by NMR spectroscopy. The main bioactive compounds were 2',4'-dihydroxy-3'-methoxychalcone (3), 2',4'-dihydroxychalcone (9), 2',4',4-trihydroxy-6'- methoxychalcone (8), 5-hydroxy-4',7-dimethoxyflavone (4), 4',5-dihydroxy-3,7,8-trimethoxyflavone (10) and 7-hydroxy- 5,8-dimethoxyflavone (11). All compounds were active against clinical isolates (MIC50 10 microg/mL) and displayed antioxidant activity (SC50 values of 20 microg/mL). The MIC and SC50 values of the isolated compounds were lower than those obtained with crude propolis extracts, chloroform sub-extracts and isolated fractions.  相似文献   
78.
Spermatogenesis, the remarkable process of morphological and biochemical transformation and cell division of diploid stem cells into haploid elongated spermatozoa, is one of the most complex cell differentiations found in animals. This differentiation process has attracted extensive studies, not only because the process involves many radical changes in the cell shape and biochemistry, but also because the phases and steps of differentiation have provided a better basis for analyzing the seminiferous epithelium cycle. Thus, this study aimed to characterize ultrastructurally the spermatogenesis process in the bat Platyrrhinus lineatus in order to provide a basis for determining the stages of spermatogenesis and to facilitate comparisons of the process between bat species and other vertebrates. Based on ultrastructural characteristics three main types of spermatogonia could be accurately identified: A(d), A(p) and B; the differentiation of spermatids was clearly divided into 12 steps (steps 1-3: Golgi phase, steps 4-5: cap phase, steps 6-9: acrosomal phase and steps 10-12: maturation phase). The ultrastructure of spermatozoa, Leydig cells and Sertoli cells was characterized; and some processes including nucleolar disorganization and the formation of synaptonemal complexes, acrosome and chromatoid body were discussed. Based on our results we may conclude that the spermatogenic process of P. lineatus follows the pattern of mammals with some specificity, as the process of formation of the acrosome and the presence of the perfuratorium. By other side, the simpler ultrastructure of its spermatozoon shows a pattern more closely related to the sperm cells of humans and other primates.  相似文献   
79.
Nitro-fatty acids are electrophilic signaling mediators formed in increased amounts during inflammation by nitric oxide and nitrite-dependent redox reactions. A more rigorous characterization of endogenously-generated species requires additional understanding of their gas-phase induced fragmentation. Thus, collision induced dissociation (CID) of nitroalkane and nitroalkene groups in fatty acids were studied in the negative ion mode to provide mass spectrometric tools for their structural characterization. Fragmentation of nitroalkanes occurred mainly through loss of the NO2- anion or neutral loss of HNO2. The CID of nitroalkenes proceeds via a more complex cyclization, followed by fragmentation to nitrile and aldehyde products. Gas-phase fragmentation of nitroalkene functional groups with additional γ or δ unsaturation occurred through a multiple step cyclization reaction process, leading to 5 and 6 member ring heterocyclic products and carbon chain fragmentation. Cyclization products were not obtained during nitroalkane fragmentation, highlighting the role of double bond π electrons during NO2- rearrangements, stabilization and heterocycle formation. The proposed structures, mechanisms and products of fragmentation are supported by analysis of 13C and 15N labeled parent molecules, 6 different nitroalkene positional isomers, 6 nitroalkane positional isomers, accurate mass determinations at high resolution and quantum mechanics calculations. Multiple key diagnostic ion fragments were obtained through this analysis, allowing for the precise placement of double bonds and sites of fatty acid nitration, thus supporting an ability to predict nitro positions in biological samples.  相似文献   
80.
Phyllanthus tenellus is widely used for its antiviral, analgesic and hepatoprotective properties. Although the production of several chemical classes of secondary metabolites is influenced by UV radiation, particularly phenolic compounds, we also know that UV radiation can result in anatomical and developmental damage. However, the morphological, anatomical and phytochemical changes in response to UV-A exposure are generally understudied in the Phyllanthaceae. Therefore, we evaluated the effects of UV-A radiation on plant development and leaf anatomy, as well as the production of secondary metabolites and the contents of carotenoids and chlorophylls a and b, in P. tenellus. To accomplish this, in vitro cultures of P. tenellus were maintained for 60 days under white light (WL) and WL plus UV-A radiation. Results showed different phenotypic responses under additional UV-A, such as high phenolic metabolite production, increasing dimensions of abaxial epidermis and thickness of palisade parenchyma. Compared to plants cultured under WL, UV-A radiation caused damage to plant morphogenesis, including a reduced number of branches and shoots, consequently reducing the rate of proliferation. On the other hand, geraniin, ellagic acid and carotenoid contents increased after UV-A exposure, indicating that this light source is an important resource for inducing phenolic compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号