首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2313篇
  免费   93篇
  国内免费   22篇
化学   1424篇
晶体学   14篇
力学   84篇
数学   432篇
物理学   474篇
  2023年   19篇
  2022年   18篇
  2021年   45篇
  2020年   54篇
  2019年   59篇
  2018年   59篇
  2017年   40篇
  2016年   78篇
  2015年   79篇
  2014年   94篇
  2013年   151篇
  2012年   173篇
  2011年   241篇
  2010年   114篇
  2009年   100篇
  2008年   160篇
  2007年   136篇
  2006年   138篇
  2005年   109篇
  2004年   95篇
  2003年   82篇
  2002年   57篇
  2001年   34篇
  2000年   22篇
  1999年   15篇
  1998年   20篇
  1997年   15篇
  1996年   20篇
  1995年   12篇
  1994年   14篇
  1993年   14篇
  1992年   10篇
  1991年   6篇
  1990年   7篇
  1987年   7篇
  1986年   6篇
  1985年   11篇
  1984年   7篇
  1983年   6篇
  1982年   9篇
  1981年   7篇
  1980年   6篇
  1979年   4篇
  1978年   12篇
  1976年   10篇
  1974年   4篇
  1973年   5篇
  1961年   3篇
  1942年   6篇
  1940年   3篇
排序方式: 共有2428条查询结果,搜索用时 31 毫秒
31.
Intermolecular hydroamination or hydroarylation reactions of norbornene and cyclohexadiene performed with catalytic amounts of Brönsted or Lewis acid in ionic liquids were found to provide higher selectivity and yields than those performed in classical organic solvents. The ionic liquid increases the acidity of the media and stabilizes ionic intermediates through the formation of supramolecular aggregates.  相似文献   
32.
Controlled protein functionalization holds great promise for a wide variety of applications. However, despite intensive research, the stoichiometry of the functionalization reaction remains difficult to control due to the inherent stochasticity of the conjugation process. Classical approaches that exploit peculiar structural features of specific protein substrates, or introduce reactive handles via mutagenesis, are by essence limited in scope or require substantial protein reengineering. We herein present equimolar native chemical tagging (ENACT), which precisely controls the stoichiometry of inherently random conjugation reactions by combining iterative low-conversion chemical modification, process automation, and bioorthogonal trans-tagging. We discuss the broad applicability of this conjugation process to a variety of protein substrates and payloads.

Controlled protein functionalization holds great promise for a wide variety of applications.

Applications of protein conjugates are limitless, including imaging, diagnostics, drug delivery, and sensing.1–4 In many of these applications, it is crucial that the conjugates are homogeneous.5 The site-selectivity of the conjugation process and the number of functional labels per biomolecule, known as the degree of conjugation (DoC), are crucial parameters that define the composition of the obtained products and are often the limiting factors to achieving adequate performance of the conjugates. For instance, immuno-PCR, an extremely sensitive detection technique, requires rigorous control of the average number of oligonucleotide labels per biomolecule (its DoC) in order to achieve high sensitivity.6 In optical imaging, the performance of many super-resolution microscopy techniques is directly defined by the DoC of fluorescent tags.7 For therapeutics, an even more striking example is provided by antibody–drug conjugates, which are prescribed for the treatment of an increasing range of cancer indications.8 A growing body of evidence from clinical trials indicates that bioconjugation parameters, DoC and DoC distribution, directly influence the therapeutic index of these targeted agents and hence must be tightly controlled.9Standard bioconjugation techniques, which rely on nucleophile–electrophile reactions, result in a broad distribution of different DoC species (Fig. 1a), which have different biophysical parameters, and consequently different functional properties.10Open in a separate windowFig. 1Schematic representation of the types of protein conjugates.To address this key issue and achieve better DoC selectivity, a number of site-specific conjugation approaches have been developed (Fig. 1b). These techniques rely on protein engineering for the introduction of specific motifs (e.g., free cysteines,11 selenocysteines,12 non-natural amino acids,13,14 peptide tags recognized by specific enzymes15,16) with distinct reactivity compared to the reactivity of the amino acids present in the native protein. These motifs are used to simultaneously control the DoC (via chemo-selective reactions) and the site of payload attachment. Both parameters are known to influence the biological and biophysical parameters of the conjugates,11 but so far there has been no way of evaluating their impact separately.The influence of DoC is more straightforward, with a lower DoC allowing the minimization of the influence of payload conjugation on the properties of the protein substrate. The lowest DoC that can be achieved for an individual conjugate is 1 (corresponding to one payload attached per biomolecule). It is noteworthy that DoC 1 is often difficult to achieve through site-specific conjugation techniques due to the symmetry of many protein substrates (e.g., antibodies). Site selection is a more intricate process, which usually relies on a systematic screening of conjugation sites for some specific criteria, such as stability or reactivity.17Herein, we introduce a method of accessing an entirely new class of protein conjugates with multiple conjugation sites but strictly homogenous DoCs (Fig. 1c). To achieve this, we combined (a) iterative low conversion chemical modification, (b) process automation, and (c) bioorthogonal trans-tagging in one workflow.The method has been exemplified for protein substrates, but it is applicable to virtually any native bio-macromolecule and payload. Importantly, this method allows for the first time the disentangling of the effects of homogeneous DoC and site-specificity on conjugate properties, which is especially intriguing in the light of recent publications revealing the complexity of the interplay between payload conjugation sites and DoC for in vivo efficacy of therapeutic bioconjugates.18 Finally, it is noteworthy that this method can be readily combined with an emerging class of site-selective bioconjugation reagents to produce site-specific DoC 1 conjugates, thus further expanding their potential for biotechnology applications.19  相似文献   
33.
The asymmetric Michael addition of propionaldehyde to (2E)-(3-nitro-but-2-enyloxymethyl)-benzene 8, catalyzed by the chiral diamine (S,S)-N-iPr-2,2′-bipyrrolidine, afforded, with 93% ee, a precursor 9 of (−)-botryodiplodin. The nitro functionality of 9 was converted to a ketone via a Nef reaction to give, after a few steps, the enantiomerically enriched (−)-botryodiplodin.  相似文献   
34.
35.
36.
Solvolysis of asymmetric homoallylic triflates bearing a terminal stannyl substituent gives disubstituted cyclopropanes and bicyclopropanes bearing differentiated termini in high enantiopurity.  相似文献   
37.
A phytochemical investigation in plantlets of the Brazilian medicinal tree Virola surinamensis resulted in the isolation and structural determination of four new compounds: 3-hydroxy-4-methyl-2-(11'-piperonyl-n-undecyl)-butenolide; 3-hydroxy-4-methyl-2-(7'-piperonyl-n-heptyl)-butanolide; 9'-(3,4-methylenedioxy-phenyl)-nonanoic acid and 13'-(3,4-methylene-dioxyphenyl)-tridecanoic acid. Thirteen compounds previously isolated from seeds and adult plants were also reported.  相似文献   
38.
Fisher's droplet picture is used to define a “microscopic” surface tension for small droplets. The nucleation rate is then calculated. Excellent agreement between experiments and our calculations has been found for H2O, CH3OH, C2H5OH, NH3, C6H6, CHCl3 and CCl3F.  相似文献   
39.
The present work discusses the grafting by electron beam irradiation of poly(ethylene oxide) (PEO) star-shaped polymers onto porous expanded polytetrafluoroethylene (EXPTFE) surfaces. The resulting materials are intended to combine the good biocompatible properties of PEO with the outstanding mechanical properties of PTFE. The star-shaped PEOs were synthesized via anionic polymerization. 3 Mev electron beam irradiation was applied to graft these PEO stars onto porous EXPTFE surfaces. The hydrophobic EXPTFE surface had to be pre-modified with N-vinylpyrrolidone. ESCA was used to quantify the amount of grafted star-shaped PEO. Unmodified EXPTFE surfaces are well known, when implanted in a body, to be rapidly covered by a layer of cells and fibrin. The EXPTFE coated with PEO were implanted in the peritoneal cavity of rats (or under the back skin). This implantation did not induce any inflammation reactions and SEM analysis had attested the absence of adsorbed cells and fibrin. The glucose diffusion properties of these membranes were studied by a lag time analysis method and compared to those of pure PEO hydrogels. As expected, glucose diffuses through the hydrogel coated membrane and diffusion is not affected by the presence of the EXPTFE membrane.  相似文献   
40.
The synthesis, structural characterization, and photophysical behavior of a 14-membered tetraazamacrocycle with pendant 4-dimethylaminobenzyl (DMAB) and 9-anthracenylmethyl groups is reported (L3, 6-((9-anthracenylmethyl)amino)-trans-6,13-dimethyl-13-((4-dimethylaminobenzyl)amino)-1,4,8,11-tetraazacyclotetradecane). In its free base form, this compound displays rapid intramolecular photoinduced electron transfer (PET) quenching of the anthracene emission, with both the secondary amines and the DMAB group capable of acting as electron donors. When complexed with Zn(II), the characteristic fluorescence of the anthracene chromophore is restored as the former of these pathways is deactivated by coordination. Importantly, it is shown that the DMAB group, which remains uncoordinated and PET active, acts only very weakly to quench emission, by comparison to the behavior of a model Zn complex lacking the pendant DMAB group, [ZnL2]2+ (Chart 1). By contrast, Stern-Volmer analysis of intermolecular quenching of [ZnL2]2+ by N,N-dimethylaniline (DMA) has shown that this reaction is diffusion limited. Hence, the pivotal role of the bridge in influencing intramolecular PET is highlighted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号