首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1292篇
  免费   49篇
  国内免费   4篇
化学   973篇
晶体学   2篇
力学   22篇
数学   207篇
物理学   141篇
  2023年   12篇
  2022年   12篇
  2021年   77篇
  2020年   36篇
  2019年   32篇
  2018年   26篇
  2017年   13篇
  2016年   41篇
  2015年   40篇
  2014年   46篇
  2013年   70篇
  2012年   85篇
  2011年   97篇
  2010年   50篇
  2009年   38篇
  2008年   85篇
  2007年   100篇
  2006年   69篇
  2005年   77篇
  2004年   67篇
  2003年   61篇
  2002年   42篇
  2001年   28篇
  2000年   10篇
  1999年   14篇
  1998年   9篇
  1997年   10篇
  1996年   9篇
  1995年   6篇
  1994年   8篇
  1993年   2篇
  1992年   4篇
  1991年   6篇
  1990年   5篇
  1989年   6篇
  1988年   5篇
  1987年   3篇
  1986年   4篇
  1985年   6篇
  1984年   5篇
  1982年   5篇
  1981年   3篇
  1980年   3篇
  1979年   4篇
  1978年   6篇
  1977年   2篇
  1975年   1篇
  1972年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有1345条查询结果,搜索用时 31 毫秒
991.
The conformational behavior of four [Ln(DOTA)(H(2)O)](-) systems (Ln = La, Gd, Ho, and Lu) has been characterized by means of ab initio calculations performed in vacuo and in aqueous solution, the latter by using the polarizable continuum model (PCM). Calculated molecular geometries and conformational energies of the [Ln(DOTA)(H(2)O)](-) systems, and interconversion mechanisms, barriers, and (13)C NMR spectra of the [Lu(DOTA)](-) complex are compared with experimental values. For each system, geometry optimizations, performed in vacuo and in solution at the HF/3-21G level and using a 46+4f(n) core electron effective core potential (ECP) for lanthanides, provide two minima corresponding to a square antiprismatic (A) and an inverted antiprismatic (IA) coordination geometry. All the systems are nonacoordinated, with the exception of the IA isomer of the Lu complex that, from in solution calculations, is octacoordinated, in agreement with experimental data. On comparing the in vacuo relative free energies calculated at different theory levels it can be seen that the nonacoordinated species dominates at the beginning of the lanthanide series while the octacoordinated one does so at the end. Furthermore, on passing along the series the IA isomer becomes less and less favored with respect to A and for the Lu complex a stabilization of the IAisomer is observed in solution (but not in vacuo), in agreement with the experimental data. Investigation of the A<-->IA isomerization process in the [Lu(DOTA)](-) system provides two different interconversion mechanisms: a single-step process, involving the simultaneous rotation of the acetate arms, and a multistep path, involving the inversion of the cyclen cycle configuration. While in vacuo the energy barrier for the acetate arm rotation is higher than that involved in the ring inversion (23.1 and 13.1 kcal mol(-)(1) at the B3LYP/6-311G level, respectively), in solution the two mechanisms present comparable barriers (14.7 and 13.5 kcal mol(-)(1)), in fairly good agreement with the experimental values. The NMR shielding constants for the two isomers of the [Lu(DOTA)](-) complex have been calculated by means of the ab initio GIAO and CSGT methods, and using a 46-core-electron ECP for Lu. The calculated (13)C NMR chemical shifts are in close agreement with the experimental values (rms 3.3 ppm, at the HF/6-311G level) and confirm the structural assignment of the two isomers based on experimental NMR spectra in solution. The results demonstrate that our computational approach is able to predict several physicochemical properties of lanthanide complexes, allowing a better characterization of this class of compounds for their application as contrast agents in medical magnetic resonance imaging (MRI).  相似文献   
992.
Catalytic enantioselective epoxidation of α,β-unsaturated ketones promoted by diaryl-2-pyrrolidinemethanols and tert-butyl hydroperoxide (TBHP) is described. Investigation on structural modifications of the diaryl-2-pyrrolidinemethanols showed that fine tuning of the stereoelectronics of the substituents on the aryl moiety is important to achieve high efficiency. By employing a structurally optimized organocatalyst, significantly reduced loading (10 mol %) can be used to produce the epoxides in high yield and up to 90% ee at room temperature.  相似文献   
993.
A CE/biosensor for measuring ascorbic acid was developed by coupling a polyaniline optical sensor and capillary electrophoresis (CE). The capillary column was partially modified with a thin film of polyaniline redox sensitive material. Ascorbic acid was detected by monitoring the changes in optical absorbance occurring to the polyaniline film upon the reduction reaction. The sensor response (change in optical absorbance at 650 nm) is proportional to the concentration of ascorbic acid over a range of 2.5-250 mg/L and the response range has shown a clear dependence on the characteristics of the polymerized film. High specificity and sensitivity of the present method, low sample consumption, short times of response (ca. 2 min) and the reproducibility of the results demonstrate that the CE/polyaniline-sensor could be further employed in the study of the relation between the content of L-ascorbic acid in body fluids and clinical parameters, e.g., cell ageing.  相似文献   
994.
995.
The nature of the heteroatom X incorporated in the five-membered PXP-diphosphine bridging chain was found to play a primary unit role both in the overall stability and in the stereochemical arrangement of nitrido-containing [M(N)(PXP)](2+) metal fragments (M = Tc, Re). Thus, by mixing PXP ligands with labile [Re(N)Cl(4)](-) and Tc(N)Cl(2)(PPh(3))(2) nitrido precursors in CH(2)Cl(2)/MeOH mixtures, a series of neutral M(N)Cl(2)(PXP) complexes (M = Tc, 1-5; M = Re, 8, 9) was collected. In the resulting distorted octahedrons, PXP adopted facial or meridional coordination, and combination with halide co-ligands produced three different stereochemical arrangements, that is, fac,cis, mer,cis, and mer,trans, depending primarily on the nature of the diphosphine heteroatom X. When X = NH, mer,cis-Tc(N)Cl(2)(PNP1), 1, was the only isomer formed. Alternatively, when a tertiary amine nitrogen (X = NR; R = CH(3), CH(2)CH(2)OCH(3)) was introduced in the bridging chain, fac,cis-M(N)Cl(2)(PN(R)P) complexes (M = Tc, 2, 3; M = Re, 8f) were obtained. Isomerization into the mer,cis-Re(N)Cl(2)(PN(R)P), 8m, species was observed only in the case of rhenium when the tertiary amine group carried the less encumbering methyl substituent. fac,cis-Tc(N)Cl(2)(PSP), 4f, was isolated in the solid state when X = S, but a mixture of fac,cis-Tc(N)Cl(2)(PSP) and mer,trans-Tc(N)Cl(2)(PSP), 4m, isomers was found in equilibrium in the solution state. A similar equilibrium between fac,cis-M(N)Cl(2)(POP) (M = Tc, 5f; M = Re, 9f) and mer,trans-M(N)Cl(2)(POP) (M = Tc, 5m; M = Re, 9m) species was detected in POP-containing complexes. The molecular structure of all of these complexes was assessed by means of conventional physicochemical techniques including multinuclear NMR spectroscopy and X-ray diffraction analysis of representative mer,cis-Tc(N)Cl(2)(PN(H)P), 1, fac,cis-Tc(N)Cl(2)(PSP), 4f, and mer,cis-Re(N)Cl(2)(PN(Me)P), 8m, compounds.  相似文献   
996.
The experimental electron density of the donor-acceptor complex of (E)-1,2-bis(4-pyridyl)ethylene (bpe) with 1,4-diiodotetrafluorobenzene (F(4)DIB) at 90 K has been determined with the aspherical atom formalism and analyzed by means of the topological theory of molecular structure. The bpe and F(4)DIB molecules are connected by intermolecular I.N bonds into infinite 1D chains. F.H bonds link these chains together to form the crystal assembly. The topological analysis reveals that the Cbond;I bond is of the "closed shell" type. Its bond-critical properties run parallel to those found in metal-metal and metal-ligand bonds of organometallic compounds. The integrated net charges show that the I.N halogen bond has an essentially electrostatic nature. F.F, F.C, and C.C intermolecular interactions, for which a bond path was found, contribute to reinforce the crystal structure.  相似文献   
997.
Matrix metalloproteinases (MMPs) are a family of Zn-dependent endo-peptidases known for their ability to cleave several components of the extracellular matrix, but which can also cleave many non-matrix proteins. There are many evidences that MMPs are involved in physiological and pathological processes, and a huge effort has been put in the development of possible inhibitors that could reduce the activity of MMPs, as it is clear that the ability to monitor and control such activity plays a pivotal role in the search for potential drugs aimed at finding a cure for several diseases such as pulmonary emphysema, rheumatoid arthritis, fibrotic disorders and cancer.A powerful method currently available to study enzyme-inhibitor interactions is based on the use of the surface plasmon resonance (SPR) technique. When MMP interactions are studied, a procedure by which inhibitors are normally anchored on sensor chips and SPR technique is used in order to study their interaction with MMPs molecules is usually followed. This is because it is currently believed that MMPs cannot be anchored on the sensor-chip surface without losing their activity. However, this approach gives rise to problems, as the anchoring of low-molecular-weight inhibitors on gold surfaces easily affects their ability to interact with MMPs. For this reason, the anchoring of MMPs is highly desirable.A new experimental protocol that couples the Fourier transform-SPR (FT-SPR) technique with electrospray ionization-mass spectroscopy (ESI-MS) is described here for the evaluation of the activity of MMP-1 catalytic domain (cdMMP-1) anchored on gold surfaces. The cdMMP-1 surface coverage is calculated by using FT-SPR and the enzyme activity is estimated by ESI-MS. The proposed method is label-free.  相似文献   
998.
The structure of the 1:3 complex between 5,5'-biscalix[4]arene-hexabenzoateand toluene has been determined by a single crystal X-ray diffraction study. Thetwo calix[4]arene subunits of the 5,5'-biscalix[4]arene system are related by aninversion center and are joined by an eclipsed biphenyl para-para linkage. Each calix[4]arene moiety displays a 1,3-alternate conformation and includes a toluene molecule within two opposite benzoate groups, while a third toluene molecule lies close to a crystallographic inversion center.  相似文献   
999.
The octanuclear aggregates M(8)(mu(4)-O)(2)(O(2)CN(i)()Pr(2))(12) [M = Mn(II) 1, Co(II) 2, Ni(II) 3] have been prepared in good yields by controlled hydrolysis of the corresponding metal carbamate precursors [M(O(2)CN(i)()Pr(2))(2)](n)(). X-ray analysis has shown compounds 1-3 to be isostructural. The core of 2 contains two distorted [M(4)O] tetrahedra related by an inversion center. The hexanuclear carbamates M(6)(O(2)CNEt(2))(12) in toluene undergo a metal redistribution process with formation of the hexanuclear carbamates M'(x)M' '(6-x)(O(2)CNEt(2))(12), M' = Co, M' ' = Mn, as evidenced by mass-spectrometric data. In the presence of moisture, the mixed octanuclear carbamates Co(x)Mn(6-x)(MnO)(CoO)(O(2)CNEt(2))(12) were promptly formed and detected by DCI/MS measurements. Mass spectral data of Co(8)(mu(4)-O)(2)(O(2)CN(i)Pr(2))(12) are also reported.  相似文献   
1000.
Synthetic chemists often exploit the high enantioselectivity of lipases to prepare pure enantiomers of primary alcohols, but the molecular basis for this enantioselectivity is unknown. The crystal structures of two phosphonate transition-state analogs bound to Burkholderia cepacia lipase reveal this molecular basis for a typical primary alcohol: 2-methyl-3-phenyl-1-propanol. The enantiomeric alcohol moieties adopt surprisingly similar orientations, with only subtle differences that make it difficult to predict how to alter enantioselectivity. These structures, along with a survey of previous structures of enzyme bound enantiomers, reveal that binding of enantiomers does not involve an exchange of two substituent positions as most researchers assumed. Instead, the enantiomers adopt mirror-image packing, where three of the four substituents at the stereocenter lie in similar positions. The fourth substituent, hydrogen, points in opposite directions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号