首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   236篇
  免费   13篇
化学   172篇
晶体学   2篇
力学   28篇
数学   16篇
物理学   31篇
  2023年   5篇
  2022年   2篇
  2021年   5篇
  2020年   10篇
  2019年   7篇
  2018年   4篇
  2017年   4篇
  2016年   10篇
  2015年   11篇
  2014年   3篇
  2013年   11篇
  2012年   13篇
  2011年   12篇
  2010年   11篇
  2009年   5篇
  2008年   12篇
  2007年   8篇
  2006年   13篇
  2005年   16篇
  2004年   2篇
  2003年   11篇
  2002年   2篇
  2001年   7篇
  2000年   2篇
  1998年   2篇
  1997年   10篇
  1996年   4篇
  1995年   5篇
  1994年   4篇
  1993年   5篇
  1992年   4篇
  1991年   4篇
  1990年   1篇
  1989年   5篇
  1986年   1篇
  1984年   2篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1976年   1篇
  1975年   3篇
  1972年   1篇
  1970年   1篇
  1967年   1篇
  1931年   3篇
排序方式: 共有249条查询结果,搜索用时 843 毫秒
91.
The present work gives an overview about the recent developments in research on freezing phenomena in forced convection flows inside ducts. Emphasis is given to the fundamental aspects of the phenomena observed in the solidification processes as well as on the analytical and numerical modelling aspects for this kind of problems. The paper deals with solidification problems inside tubes, parallel plate channels, curved rectangular channels and in diverging rectangular channels. Additionally, some new experimental and numerical results on solidification in duct flows are shown from the current research program in Darmstadt on freezing phenomena.  相似文献   
92.
93.
The 13C chemical shifts of bicyclo[3.3.1]nonane and of the corresponding 9-hydroxy- and 9-oxo- derivatives are compared with chemical shifts calculated on the basis of stereospecific shift increments. These results as well as the 1H n.m.r. spectrum of the ketone indicate a predominant chair-chair conformation CC. A low temperature 13C n.m.r. study as well as an analysis of the temperature dependence of 13C chemical shifts in bicyclo[3.3.1]nonane furnish a limit for the free energy difference between CC and BC conformations of ΔG ≧ 5,85 kJ mol?1. The distinction between CC, BC and BB provides a test for the applicability of lanthanide-induced 1H and 13C shifts for the assignment of flexible geometries. The typical occurrence of several and/or flat minima in the LIS geometry analysis allows only the exclusion of boat–boat conformations.  相似文献   
94.
If a fluid enters an axially rotating pipe, it receives a tangential component of velocity from the moving wall, and the flow pattern change according to the rotational speed. A flow relaminarization is set up by an increase in the rotational speed of the pipe. It will be shown that the tangential- and the axial velocity distribution adopt a quite universal shape in the case of fully developed flow for a fixed value of a new defined rotation parameter. By taking into account the universal character of the velocity profiles, a formula is derived for describing the velocity distribution in an axially rotating pipe. The resulting velocity profiles are compared with measurements of Reich [10] and generally good agreement is found.Nomenclature b constant, equation (34) - D pipe diameter - l mixing length - l 0 mixing length in a non-rotating pipe - N rotation rate,N=Re /Re D - p pressure - R pipe radius - Re D flow-rate Reynolds number, - Re rotational Reynolds number, Re =v w D/ - Re* Reynolds number based on the friction velocity, Re*=v*R/ - (Re*)0 Reynolds number based on the friction velocity in a non-rotating pipe - Ri Richardson number, equation (10) - r coordinate in radial direction - dimensionless coordinate in radial direction, - v r ,v ,v z time mean velocity components - v r ,v ,v z velocity fluctations - v w tangential velocity of the pipe wall - v* friction velocity, - axial mean velocity - v ZM maximum axial velocity - dimensionless radial distance from pipe wall, - y + dimensionless radial distance from pipe wall - y 1 + constant - Z rotation parameter,Z =v w/v * =N Re D /2Re* - m eddy viscosity - ( m )0 eddy viscosity in a non-rotating pipe - coefficient of friction loss - von Karman constant - 1 constant, equation (31) - density - dynamic viscosity - kinematic viscosity  相似文献   
95.
Several salts (alkali, Pd(NH(3))(3), and (i)PrNH(2)) of 5-cyanoiminotetrazoline (C(2)N(6)(2-), 5-cyanoiminotetrazolinediide, CIT) were investigated. A full characterization by means of X-ray, Raman, NMR techniques, mass spectrometry, and elemental analysis is presented for the (i)()PrNH(2) (4), Cs (5), and Pd(NH(3))(3) (6) salts. The CIT dianion represents a nitrogen-rich binary CN dianion, and 5 forms monoclinic crystals (a = 7.345(2) Angstroms, b = 9.505(2) Angstroms, c = 10.198(2) Angstroms, beta = 92.12(3) degrees, space group P2(1)/n, Z = 4). DSC and in situ temperature-dependent X-ray diffraction measurements of the cesium salt 5 revealed an astonishing thermal stability accompanied by a reversible phase transition from the low-temperature alpha modification to the metastable beta modification at 253 degrees C. Above the melting point (334 degrees C), the cesium salt decomposes yielding cesium azide and cesium dicyanamide, which decomposes under further heating under release of nitrogen. The reaction of Cs(2)CIT with SO(2) resulted in the surprising formation of a new cesium salt with the 5-cyaniminotetrazoline-1-sulfonate dianion (Cs(2)CITSO(3).SO(2) (7)). 7 crystallizes in the monoclinic space group P2(1) with one SO(2) solvent molecule (a = 8.0080(2) Angstroms, b = 8.0183(2) Angstroms, c = 9.8986(3) Angstroms, beta = 108.619(1) degrees, Z = 2). The structure and bonding of the 10pi dianion are discussed on the basis B3LYP/aug-cc-pvTZ computations (MO, NBO), and the three-dimensional array of the cesium salts with respect to the Cs(delta) (+)-N(delta)(-) in 5 compared to the Cs(delta)(+)-N(delta)(-) and Cs(delta)(+)-O(delta)(-) in 7 is discussed. Due to the expected rich bonding modes of the CIT anions, the coordination chemistry with palladium was also studied, yielding monoclinic crystals of [Pd(CIT)(NH(3))(3)].H(2)O (6, a = 7.988(2) Angstroms, b = 8.375(2) Angstroms, c = 13.541(3) Angstroms, beta = 104.56 degrees, space group P2(1)/n, Z = 4). In the solid state, the complex is composed of dimers, showing two agostic interactions and an unusual close interplanar pi-pi stacking of the tetrazole moiety of the CIT ligand.  相似文献   
96.
The redox behaviour of sterically constrained tricyclic phosphine 3a was investigated by spectroelectrochemistry. The data suggested a highly negative reduction potential with the reversible formation of a dianionic species. Accordingly, 3a reacted with two equivalents of Li/naphthalene by reductive cleavage of a P–C bond of one of the PC4 heterocycles. The resulting dilithium compound 5 represents a phosphaindole derivative with annulated aromatic C6 and PC4 rings. It is an interesting starting material for the synthesis of new heterocyclic molecules, as was shown by treatment with Me2SiCl2 and PhPCl2. The structures of the products (6 and 7) formally reflect ring expansion by insertion of silylen or phosphinidene fragments into a P–C bond of 3a. Treatment of 3a with H2O2 did not result in the usually observed transfer of a single O atom to phosphorus, but oxidative cleavage of a strained PC4 ring afforded a bicyclic phosphinic acid, R2PO2H.

Sterically constrained tricyclic phosphines with annulated five- and six-membered rings show fascinating chemical and redox reactivity as indicated by sophisticated in situ UV-vis CV and multi-pulse chronoamperometry.  相似文献   
97.
Summary Seven new cyclic dipeptides have been synthesized and tested for their applicability as tools to elucidate the mechanism of formation of mandelonitrile with (SS)-cyclo-[Phe-His] type catalysts. Conformational analyses based on1H NMR spectra are presented for all prepared cyclic dipeptides.Dedicated to Prof. Dr. Dres. h.c.Herbert Oelschläger on the occasion of his 75th birthday  相似文献   
98.
1,5-Diamino-1H-tetrazole (2, DAT) can easily be protonated by reaction with strong mineral acids, yielding the poorly investigated 1,5-diaminotetrazolium nitrate (2a) and perchlorate (2b). A new synthesis for 2 is introduced that avoids lead azide as a hazardous byproduct. The reaction of 1,5-diamino-1H-tetrazole with iodomethane (7a) followed by the metathesis of the iodide (7a) with silver nitrate (7b), silver dinitramide (7c), or silver azide (7d) leads to a new family of heterocyclic-based salts. In all cases, stable salts were obtained and fully characterized by vibrational (IR, Raman) spectroscopy, multinuclear NMR spectroscopy, mass spectrometry, elemental analysis, X-ray structure determination, and initial safety testing (impact and friction sensitivity). Most of the salts exhibit good thermal stabilities, and both the perchlorate (2b) and the dinitramide (7c) have melting points well below 100 degrees C, yet high decomposition onsets, defining them as new (7c), highly energetic ionic liquids. Preliminary sensitivity testing of the crystalline compounds indicates rather low impact sensitivities for all compounds, the highest being that of the perchlorate (2b) and the dinitramide (7c) with a value of 7 J. In contrast, the friction sensitivities of the perchlorate (2b, 60 N) and the dinitramide (7c, 24 N) are relatively high. The enthalpies of combustion (Delta(c)H degrees ) of 7b-d were determined experimentally using oxygen bomb calorimetry: Delta(c)H degrees (7b) = -2456 cal g(-)(1), Delta(c)H degrees (7c) = -2135 cal g(-)(1), and Delta(c)H degrees (7d) = -3594 cal g(-)(1). The standard enthalpies of formation (Delta(f)H degrees ) of 7b-d were obtained on the basis of quantum chemical computations using the G2 (G3) method: Delta(f)H degrees (7b) = 41.7 (41.2) kcal mol(-)(1), Delta(f)H degrees (7c) = 92.1 (91.1) kcal mol(-)(1), and Delta(f)H degrees (7d) = 161.6 (161.5) kcal mol(-)(1). The detonation velocities (D) and detonation pressures (P) of 2b and 7b-d were calculated using the empirical equations of Kamlet and Jacobs: D(2b) = 8383 m s(-)(1), P(2b) = 32.2 GPa; D(7b) = 7682 m s(-)(1), P(7b) = 23.4 GPa; D(7c) = 8827 m s(-)(1), P(7c) = 33.6 GPa; and D(7d) = 7405 m s(-)(1), P(7d) = 20.8 GPa. For all compounds, a structure determination by single-crystal X-ray diffraction was performed. 2a and 2b crystallize in the monoclinic space groups C2/c and P2(1)/n, respectively. The salts of 7 crystallize in the orthorhombic space groups Pna2(1) (7a, 7d) and Fdd2 (7b). The hydrogen-bonded ring motifs are discussed in the formalism of graph-set analysis of hydrogen-bond patterns and compared in the case of 2a, 2b, and 7b.  相似文献   
99.
By irradiating crystals of a (diphosphine)Pt(0) complex containing 2,2'-dibromotolane as ligand with sunlight, a rare example of selective carbon-carbon bond cleavage in the solid state could be observed.  相似文献   
100.
The experimental charge density for hexamethyldiphosphonium ditriflate has been determined from low-temperature high-resolution X-ray diffraction data. These results have been compared with theoretically calculated values for the isolated gas-phase compound. Analysis of the topological and atomic basin properties has provided insight into the exact nature of the P-P bond in both the crystalline and the gas-phase structures. The rho(b)(r) and nabla2rho(b)(r) values highlight the covalent nature of the P-P bond, while the atomic charges indicate a localization of the positive charges on the two phosphorus atoms. This seems to indicate that a covalent bond is formed despite a strong electrostatic repulsion between these two heteroatoms. The topological properties and electrostatic potentials have also been shown to provide significant insight into the chemical reactivity of the title compound. A topological analysis of P2Me4, P2Me5(+), and P2Me6(+2) species has provided information about the progression of the P-P bond in the synthesis of the title compound. An investigation of the different hydrogen-bonding networks present in the crystalline and gas-phase structures, along with their affect on the electronic structure of the title compound has also been investigated. This has all led to significant new insight into the electronic structure, reactivity, and weak hydrogen bonding in prototypical 1,2-diphosphonium dications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号