首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1167篇
  免费   47篇
  国内免费   6篇
化学   797篇
晶体学   12篇
力学   38篇
数学   140篇
物理学   233篇
  2023年   12篇
  2022年   16篇
  2021年   27篇
  2020年   26篇
  2019年   29篇
  2018年   39篇
  2017年   21篇
  2016年   53篇
  2015年   34篇
  2014年   42篇
  2013年   100篇
  2012年   69篇
  2011年   88篇
  2010年   49篇
  2009年   54篇
  2008年   93篇
  2007年   72篇
  2006年   75篇
  2005年   70篇
  2004年   43篇
  2003年   35篇
  2002年   26篇
  2001年   5篇
  2000年   10篇
  1998年   11篇
  1997年   4篇
  1996年   8篇
  1995年   10篇
  1994年   8篇
  1992年   5篇
  1991年   9篇
  1990年   3篇
  1989年   4篇
  1988年   6篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1981年   6篇
  1980年   3篇
  1979年   3篇
  1978年   5篇
  1977年   5篇
  1976年   5篇
  1975年   3篇
  1974年   4篇
  1967年   2篇
  1963年   2篇
排序方式: 共有1220条查询结果,搜索用时 15 毫秒
71.
Germanane (GeH), a germanium analogue of graphane, has recently attracted considerable interest because its remarkable combination of properties makes it an extremely suitable candidate to be used as 2D material for field effect devices, photovoltaics, and photocatalysis. Up to now, the synthesis of GeH has been conducted by substituting Ca by H in a β‐CaGe2 layered Zintl phase through topochemical deintercalation in aqueous HCl. This reaction is generally slow and takes place over 6 to 14 days. The new and facile protocol presented here allows to synthesize GeH at room temperature in a significantly shorter time (a few minutes), which renders this method highly attractive for technological applications. The GeH produced with this method is highly pure and has a band gap (Eg) close to 1.4 eV, a lower value than that reported for germanane synthesized using HCl, which is promising for incorporation of GeH in solar cells.  相似文献   
72.
Research on Chemical Intermediates - We have developed a simple synthetic protocol for the preparation of novel 3-(3-(4-fluorophenyl)-1-phenyl-1H-pyrazol-4-yl)-5-arylisoxazoles. The structure of...  相似文献   
73.
74.
An asymmetric Torgov cyclization, catalyzed by a novel, highly Brønsted acidic dinitro‐substituted disulfonimide, is described. The reaction delivers the Torgov diene and various analogues with excellent yields and enantioselectivity. This method was applied in a very short synthesis of (+)‐estrone.  相似文献   
75.
Fluorine doped SnO2 nanostructures were grown using ultrasonic assisted sol–gel method. The gel was obtained by dissolving stannous chloride in methanol with ammonium fluoride as dopant followed by irradiation with ultrasonic vibrations. Obtained samples were characterized by structural, morphological and optical studies. All the peaks in the X-ray diffractograms are identified and indexed as tetragonal cassiterite structure. Negative slope of Williamson–Hall plots indicates compressive strain. Particle size of SnO2 nanostructures is decreases with increases in concentration of fluorine doping. Atomic force microscopy, scanning electron microscopy and transmission electron microscopy studies confirm the formation of ring like porous structures and then hollow tube like growth with increase in the fluorine concentration. Peaks in Raman spectra also indicate strong confinement in SnO2 particles. Distinct peaks in the PL spectra make the structure suitable for photovoltaic applications.  相似文献   
76.
A new family of five-coordinate lanthanide single-molecule magnets (Ln SMMs) [Dy(Mes*O)2(THF)2X] (Mes*=2,4,6-tri-tert-butylphenyl; X=Cl, 1 ; Br, 2 ; I, 3 ) is reported with energy barriers to magnetic reversal >1200 K. The five-coordinate DyIII ions have distorted square pyramidal geometries, with halide anions on the apex, and two Mes*O ligands mutually trans- to each other, and the two THF molecules forming the second trans- pair. These geometrical features lead to a large magnetic anisotropy in these complexes along the trans-Mes*O direction. QTM and Raman relaxation times are enhanced by varying the apex halide from Cl to Br to I, or by dilution in a diamagnetic yttrium analogue.  相似文献   
77.
The world is witnessing tumultuous times as major economic powers including the US, UK, Russia, India, and most of Europe continue to be in a state of lockdown. The worst-hit sectors due to this lockdown are sales, production (manufacturing), transport (aerospace and automotive) and tourism. Lockdowns became necessary as a preventive measure to avoid the spread of the contagious and infectious “Coronavirus Disease 2019” (COVID-19). This newly identified disease is caused by a new strain of the virus being referred to as Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS CoV-2; formerly called 2019-nCoV). We review the current medical and manufacturing response to COVID-19, including advances in instrumentation, sensing, use of lasers, fumigation chambers and development of novel tools such as lab-on-the-chip using combinatorial additive and subtractive manufacturing techniques and use of molecular modelling and molecular docking in drug and vaccine discovery. We also offer perspectives on future considerations on climate change, outsourced versus indigenous manufacturing, automation, and antimicrobial resistance. Overall, this paper attempts to identify key areas where manufacturing can be employed to address societal challenges such as COVID-19.  相似文献   
78.
The building blocks of life, amino acids, are believed to have been synthesized in the extreme conditions that prevail in space, starting from simple molecules containing hydrogen, carbon, oxygen and nitrogen. However, the fate and role of amino acids when they are subjected to similar processes largely remain unexplored. Here we report, for the first time, that shock processed amino acids tend to form complex agglomerate structures. Such structures are formed on timescales of about 2 ms due to impact induced shock heating and subsequent cooling. This discovery suggests that the building blocks of life could have self-assembled not just on Earth but on other planetary bodies as a result of impact events. Our study also provides further experimental evidence for the ‘threads’ observed in meteorites being due to assemblages of (bio)molecules arising from impact-induced shocks.  相似文献   
79.
80.
A differential effective medium theory together with Brownian motion is used to predict Effective Thermal Conductivity (ETC) of CNT nanofluids. ETC was influenced significantly by Brownian motion and enhancement was higher in dilute nanofluids. A theoretical model employing an effective volume fraction with dispersibility factor agrees well with experimental data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号