首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   378篇
  免费   34篇
  国内免费   8篇
化学   250篇
晶体学   3篇
力学   28篇
数学   52篇
物理学   87篇
  2023年   5篇
  2022年   4篇
  2021年   13篇
  2020年   20篇
  2019年   18篇
  2018年   22篇
  2017年   26篇
  2016年   36篇
  2015年   23篇
  2014年   26篇
  2013年   54篇
  2012年   43篇
  2011年   31篇
  2010年   17篇
  2009年   13篇
  2008年   13篇
  2007年   13篇
  2006年   10篇
  2005年   9篇
  2004年   1篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1987年   2篇
  1980年   1篇
排序方式: 共有420条查询结果,搜索用时 46 毫秒
121.
In this study, the adsorption of hydrogen and methane on the Zn2(NDC)2(diPyTz) [(NDC = 2,6-naphthalenedicarboxylate, diPyTz = di-3,6-(4-pyridyl)-1,2,4,5-tetrazine)] metal–organic framework (MOF) and the effect of its doping with alkali metal cations (Li+, Na+, K+) were investigated using Grand Canonical Monte Carlo simulations. The results indicated that the triply catenating Zn2(NDC)2(diPyTz), possessing small pores preferentially adsorbed hydrogen. Doping of Zn2(NDC)2(diPyTz) with alkali metal cations enhanced the hydrogen adsorption on the MOF. However, this enhancement became weaker as the atomic number of metal cation increased. The simulation results showed that the hydrogen adsorption on the Li+-doped Zn2(NDC)2(diPyTz) was almost 2.35 times greater than that of the corresponding undoped MOF at low pressure and room temperature. This suggests that the doping of MOFs with alkali metal cations especially lithium is a desired strategy for hydrogen storage. Furthermore, the results revealed that the adsorption of hydrogen on the Zn2(NDC)2(diPyTz) was higher than that of methane at room temperature.  相似文献   
122.
The diffusioosmosis of an electrolyte solution inside a uniformly charged rectangular channel at steady locally developed conditions is the subject of this study. Utilizing a finite element based numerical procedure, we try to estimate the errors incurred by modeling the actual rectangular geometry of typical microchannels as a slit. We demonstrate that the flow pattern and direction are generally dependent upon the width‐to‐height ratio of the channel. Such a finding, besides showing the ineffectiveness of the slit geometry in representing a rectangular channel of small aspect ratio, informs us of another mechanism of controlling the diffusioosmotic flow. Inspections of the mean velocity reveal that, although it drastically grows by increasing the aspect ratio at smaller values of this parameter, no significant change is observed when the aspect ratio is 5 or higher. The same trend is observed when EDL is shrunk and is considered as a basis for the introduction of a slip‐like velocity, similar to the concept of the Helmholtz–Smoluchowski electroosmotic velocity, which will be of high practical importance when dealing with a micronsized channel. Because of its significance, an expression is presented for this slip velocity utilizing the curve fitting of the results, assuming a typical Peclet number.  相似文献   
123.
TiO2 nanoparticles in anatase and rutile forms was characterized and studied by several techniques including X‐ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and successfully applied as an efficient and heterogeneous catalyst in the synthesis of 1,8‐dioxo‐decahydroacridines via the one‐pot multi‐component condensation reaction of dimedone with aromatic aldehydes and ammonium acetate or aromatic amines under mild and solvent‐free conditions.  相似文献   
124.
We describe the synthesis of a layered zinc hydroxide‐dodecyl sulfate organic–inorganic hybrid nanocomposite as a new solid‐phase microextraction fiber. The fiber coating can be prepared easily in a short time and the reaction is at room temperature; it is mechanically stable and exhibits relatively high thermal stability. The synthesized layered zinc hydroxide‐dodecyl sulfate nanocomposite was successfully prepared and immobilized on a stainless steel wire and evaluated for the extraction of aromatic compounds from aqueous sample solutions in combination with gas chromatography and mass spectrometry. The method yields good results for some validation parameters. Under optimum conditions (extraction time: 15 min, extraction temperature: 50°C, desorption time: 1 min, desorption temperature: 250°C, salt concentration: 0.5 g/mL), the limit of detection and dynamic linear range were 0.69–3.2 ng/L and 10–500 ng/L, respectively. The method was applied to the analyses of benzene, toluene, ethylbenzene, and o‐, p‐, and m‐xylenes in two real water samples collected from the Aji river and Mehran river, Tabriz, Iran. Under optimum conditions, the repeatability and reproducibility for one fiber (n = 3), expressed as the relative standard deviation, was 3.2–7.3% and 4.2–11.2% respectively. The fibers are thermally stable and yield better recoveries than conventional methods of analysis.  相似文献   
125.
The authors describe a method for the trace determination of copper (II) and lead (II) in water and fish samples using solid-phase extraction via siliceous mesocellular foam functionalised by dithizone. Siliceous mesocellular was functionalised with dithizone, and the resulting sorbent was characterised by scanning electron microscopy, surface area analysis, thermogravimetric/differential thermal analysis and FTIR. Following solid-phase extraction of target ions by the sorbent, copper and lead ions were quantified by flame atomic absorption spectrometry. Factors affecting the sorption and desorption of target ions by the sorbent were evaluated and optimised. The calibration plot is linear in the 1 – 500 μg L?1 copper (II) and 3–700 μg L?1 lead (II) concentration range. The relative recovery efficiency in real sample analysis is in the range from 96 to 102%, and precision varies between 1.7 and 2.8%. It is should be noted that the limits of detection for the copper and lead analysis were 0.8 and 1.6 μg L?1, respectively. Also, the adsorption capacities for copper and lead ions were 120 and 160 mg g?1, respectively. The obtained pre-concentration factor for the lead and copper ions by the proposed solid-phase extraction was 75. The method was successfully applied to the determination of low levels of copper (II) and lead (II) in tap, Caspian sea, Persian gulf and lake water and also their detection in fish samples.  相似文献   
126.
An easy alkoxide-based sol–gel method based on Ca(NO3)2·4H2O and triethyl phosphate [PO(OC2H5)3; TEP] as Ca and P precursors have been developed to synthesize nano-hydroxyapatite (HA). The structural evolution of the samples was studied using X-ray diffraction (XRD), thermal behavior, infrared analysis, and elemental analysis via scanning electron microscopy. It is noticeable that raising of the firing temperature resulted in increasing the HA content as the dominant phase at 600 and 700 °C. The phase transformation from amorphous to crystalline HA occurred at the low temperature of 400 °C, while at higher temperatures other Ca–P compounds as secondary phases transformed to HA. The crystallite size distributions and micro-strain of the HA samples produced were characterized by XRD methods with the aid of Scherrer and Williamson–Hall equations. The results of transmission electron microscopy as a complementary and reliable technique are in good agreement with those obtained from XRD. The results indicate that increasing the firing temperature caused permanent growth of mean crystallite size and a decrease in micro-strain.  相似文献   
127.
In this study, the parameters of linear isotherm regularity, which called LIR equation state used to compute the surface tension of some dense fluids as benzene, toluene, methanol, ammonia, ethylene, and carbon monoxide. An expression has derived for radial distribution function (RDF) at constant temperature, g (σ), for a real fluid by the use of LIR. This expression, which is related to intermolecular interaction, can be used to describe the temperature–density dependency of RDF at constant temperature, g (σ, ρ, T). In addition, we derive an expression for surface tension of dense fluids (CO, C6H6, C6H5CH3, CH3OH, NH3, and C2H4) using the LIR and g (σ, ρ, T). Unlike previous models, it has shown that, surface tension can obtain without employing ΔH and ΔS. Only P-V-T experimental data have been used to calculate the surface tension. Comparison of the calculated values of surface tension by LIR with the values obtained experimentally show this method is not precise. This problem has led us to try to obtain the expression for surface tension using the extended parameters A, B (A and B are the temperature-dependent parameters which noticeably are depended on attraction and repulsion). The obtained result shows that the accuracy of this method is very high and quite admissible.  相似文献   
128.

Double-charged diazabicyclo[2.2.2]octane (DABCO) was immobilized on the inner surface of a nanomaterial composed of the layered double hydroxides (LDHs) of Zn(II) and Cr(III). The resulting material was characterized by SEM, FT-IR and XRD techniques. This novel nanocomposite has been used as a highly porous fiber coating for solid-phase microextraction (SPME) of phenol and various chloro-, nitro- and aminophenols. The LDH nanocomposite was deposited on a stainless steel wire and then evaluated with respect to the extraction of phenolic compounds from water samples. The effects of temperature, extraction time, ionic strength, stirring rate, pH, and desorption temperature and time on the extraction were optimized. The compounds were then separated and quantified by GC-MS. Under optimum conditions, the repeatability for a single fiber (for n = 3 and expressed as the relative standard deviation) is between 2.3 and 7.2 %. The detection limits are between 0.02 and 6.3 pg mL−1. The method is simple, rapid, and inexpensive. The fiber is thermally stable and its use gives high recoveries.

Double-charged diazabicyclo[2.2.2]octane (DABCO) was immobilized on the inner surface of a nanomaterial composed of the layered double hydroxides (LDHs) of Zn(II) and Cr(III). This novel nanocomposite has been used as a highly porous fiber coating for solid-phase microextraction (SPME) of phenol and various chloro-, nitro- and aminophenols.

  相似文献   
129.
In this project, 2‐[N‐ethyl‐N‐[4‐[(4′‐nitrophenyl)azo]‐phenyl]amino]ethanol (Disperse Red‐I) was prepared by adding of (N‐ethyl‐2‐anilinoethanol) with the salt diazonium p‐nitroaniline. The main mesogenic liquid crystalline (LC) 2‐[N‐ethyl‐N‐[4‐[4′‐nitrophenyl)azo]‐phenyl]amino]ethyl‐3‐chloro propionate (Disperse Red‐II) was synthesized by reaction of disperse Red I and 3‐chloropropanoeic acid at the alkaline condition. Then 2‐anilinoethyl‐3‐chloropropionate‐{2‐[ethyl[4‐[(4′‐nitrophenyl)azo]phenyl]amino] ethanol}, (2AECP‐Red‐I) was prepared via reaction of disperse red‐II and 2‐anilinoethanol. On the other hand, poly 2‐anilinoethyl‐3‐chloropropionate‐{2‐[ethyl[4‐[(4′‐nitrophenyl)azo]phenyl]amino]ethanol} and poly(2AECP‐Red‐I) have been synthesized by polymerization of 2AECP‐Red‐I in two separate schemes. These include polymerization in the absence of electric field (EF) and polymerization under different EFs. A comparison of the results reveals that the polymer produced under electric field is more linear, regular in shape with high electrical conductivity, as well as good LC behavior with semectic texture. The resulted monomer and poly(2AECP‐Red‐I) are characterized by using Fourier transform infrared and ultraviolet–visible and were studied by thermogravimetric analysis and differential scanning calorimetry. Scanning electron microscopy images supported the formation of poly(2AECP‐Red‐I) and showed morphology feature and homogeneous structure on poly(2AECP‐Red‐I). Electrical conductivity of poly(2AECP‐Red‐I) has been studied by four‐point probe method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
130.
CuO nanostructures with different morphologies and sizes were grown in a controlled manner using a simple low-temperature hydrothermal technique. By controlling the pH of reaction mixture, spherical nanoparticles and cloudlike CuO structures were synthesized at 100-150 °C with excellent efficiency. These CuO nanostructures have been tested for CO gas monitoring by depositing them as thick films on an interdigitated alumina substrate and evaluated the surface resistance of the deposited layer as a function of operating temperature and CO concentrations. The gas sensitivity tests have demonstrated that the CuO nanostructures, especially cloudlike morphology, exhibit high sensitivity to CO proving their applicability in gas sensors. The role of the nanostructure on the sensing properties of CuO is also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号