首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   679篇
  免费   38篇
  国内免费   2篇
化学   572篇
晶体学   2篇
力学   7篇
数学   86篇
物理学   52篇
  2024年   2篇
  2023年   7篇
  2022年   17篇
  2021年   46篇
  2020年   15篇
  2019年   16篇
  2018年   13篇
  2017年   7篇
  2016年   31篇
  2015年   23篇
  2014年   22篇
  2013年   35篇
  2012年   44篇
  2011年   43篇
  2010年   28篇
  2009年   34篇
  2008年   40篇
  2007年   49篇
  2006年   40篇
  2005年   39篇
  2004年   29篇
  2003年   34篇
  2002年   25篇
  2001年   8篇
  2000年   7篇
  1999年   3篇
  1998年   8篇
  1997年   3篇
  1996年   14篇
  1995年   6篇
  1994年   4篇
  1993年   6篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1974年   1篇
  1968年   1篇
排序方式: 共有719条查询结果,搜索用时 31 毫秒
691.
DNA repair protein RAD51 is a key player in the homologous recombination pathway. Upon DNA damage, RAD51 is transported into the nucleus by BRCA2, where it can repair DNA double-strand breaks. Due to the structural complexity and dynamics, researchers have not yet clarified the mechanistic details of every step of RAD51 recruitment and DNA repair. RAD51 possesses an intrinsic tendency to form oligomeric structures, which make it challenging to conduct biochemical and biophysical investigations. Here, for the first time, we report on the isolation and characterization of a human monomeric RAD51 recombinant form, obtained through a double mutation, which preserves the protein's integrity and functionality. We investigated different buffers to identify the most suitable condition needed to definitively stabilize the monomer. The monomer of human RAD51 provides the community with a unique biological tool for investigating RAD51-mediated homologous recombination, and paves the way for more reliable structural, mechanistic, and drug discovery studies.  相似文献   
692.
693.
The chemical conjugation of bisphosphonates (BPs), specifically alendronate, to hydroxyapatite could be an effective means to impart to it fine-tuned bioactivity. Horse heart myoglobin (Mb), a well-characterized protein, has been adsorbed onto biomimetic hydroxyapatite nanocrystals (nHA) and onto the nHA/alendronate conjugate powdered samples. The obtained materials have potential use in bone implantation and as prospective drug-delivery devices. The kinetic absorption of Mb onto nHA is dramatically affected by its functionalization with alendronate. The covering of the nHA surface by alendronate inhibits the adsorption of myoglobin. The adsorption mechanisms of the protein were studied by spectroscopic techniques (UV-vis and surface-enhanced Raman spectroscopy). The results indicate that the protein changes conformation upon adsorption on the inorganic substrate. In particular, the interaction with nHA alters the coordination state of the iron in the heme through the formation of a hexacoordinated low-spin Mb heme, possibly involving the distal histidine. Instead, the covering of the nHA surface by alendronate does not adsorb the protein but preserves the coordination state of the heme moiety. This study could be of significance either in the field of biomaterials science, in particular, to fine tune a bone-specific drug delivery device and to test nHA as a new support for heterogeneous catalysis, improving the understating of enzyme immobilization.  相似文献   
694.
The reactivity towards H(2)O(2) of the complexes [Fe(pca)(2)(py)(2)].py (1) and Na(2){[Fe(pca(3))](2)O}.2H(2)O.CH(3)CN (2) (where pca(-) is pyrazine-2-carboxylate) and their catalytic activity in the oxidation of hydrocarbons is reported. Addition of H(2)O(2) to 1 results in the formation of a dinuclear Fe(III)-(mu-O)-Fe(III) species characterized spectroscopically and by cyclic voltammetry. By contrast, treatment of 2 with H(2)O(2) results in the formation of mononuclear iron(II) complexes, [Fe(pca)(2)(solvent)(2)]. The experimental results indicate that the catalytic activity of the starting complexes 1 and 2 is strongly dependent on the species formed in solution.  相似文献   
695.
The significance of laboratory sample preparation for the determination of two important mycotoxins, ochratoxin A (OTA) and deoxynivalenol (DON), in wheat was investigated by comparing water-slurry mixing and dry-milling procedures. The distribution of OTA and DON in 10 kg samples of naturally contaminated wheat was established by analyzing one hundred 100 g subsamples of each sample. A normal distribution and a good repeatability of DON measurements was observed for both water-slurry mixing (mean 2290 microg/kg, CV 4.6%, median 2290 microg/kg) and dry milling (mean 2310 microg/kg, CV 6.4%, median 2290 microg/kg) procedures. For OTA determinations, reliable results could be obtained only by slurry mixing sample preparation (mean 2.62 microg/kg, CV 4.0%, median 2.62 microg/kg), whereas dry-milling comminution resulted in an inhomogeneous distribution with a high variability (mean 0.83 microg/kg, CV 75.2%, median 0.60 microg/kg) and a positive skewness (2.12). Ad hoc experiments were performed on different size portions of the same sample (10 kg) to assess accuracy and precision of the comminution/homogenization procedures (slurry mixing and dry milling). Very good results were obtained for DON determination with both procedures in terms of accuracy (>98.7% of the "weighted value") and precision (CV <3%). For OTA determination good results were only obtained by slurry mixing (99.4% of the "weighted value," CV 10%), whereas dry milling provided results with low accuracy (43.2% of the "weighted value") and high variability (CV 110%). This study clearly demonstrated that sample preparation by slurry mixing is strictly necessary to obtain reliable laboratory samples for OTA determination in wheat to minimize misclassification of acceptable/rejectable lots, mainly within official control.  相似文献   
696.
Recent experimental and theoretical studies on N-alkylated indanylidene pyrroline Schiff bases (NAIP) show that these compounds exhibit biomimetic photoisomerization analogous to that in the chromophore of rhodopsin. The NAIP compounds studied previously isomerize rapidly and often evolve coherently on the ground-electronic surface after reaction. We present the results of transient electronic absorption spectroscopy on dMe-OMe-NAIP, a newly synthesized NAIP analogue that differs from other NAIP compounds in the substituents on its pyrrolinium ring. Following excitation with 400 nm light, dMe-OMe-NAIP relaxes from the electronic-excited state in less than 500 fs, which is slower than in other analogues, and does not show the prominent oscillations observed in other NAIP compounds. A reduction in the amount of twisting between the rings caused by removal of the methyl group is likely responsible for the slower isomerization. Measurements in solvents of varying viscosity and structure suggest that intramolecular processes dominate the relaxation of nascent photoproducts.  相似文献   
697.
Tetraethylene glycol dimethylether-lithium bis(oxalate)borate (TEGDME-LiBOB) electrolyte is here studied. Electrochemical impedance spectroscopy (EIS) measurements demonstrate that the electrolyte has conductivity higher than 10− 3 S cm− 1 at room temperature and about 10− 2 S cm− 1 at 60 °C, while thermogravimetry indicates a stability extending up to 180 °C. Sweep voltammetry of the electrolyte shows anodic stability extending over 4.6 V vs. Li and cathodic peak at about 1.5 V vs. Li/Li+, caused by a decomposition of LiBOB salt, and following prevented by using a pre-treated Sn-C anode. Furthermore, LiFePO4 electrode is successfully used as cathode in a lithium cell using the TEGDME-LiBOB electrolyte. The promising electrochemical results, the low cost and the very high safety level candidate the electrolyte here reported as a valid alternative to the conventional electrolyte based on fluorinated salts presently used in the lithium ion battery field.  相似文献   
698.
By highly efficient, one-pot, three-component reactions, combining one set of 1,2-diaza-1,3-dienes (DDs), primary amines, and isothiocyanates in a different sequential order of addition, heterocyclic skeletal diversity can be achieved. The key feature discriminating the different heterocyclic core formation is the availability of the N or S heteronucleophile to give the first Michael addition step affording regioselective substituted 2-thiohydantoins or 2-iminothiazolidinones. The hydrazone or enehydrazino side chain at the 5-position of both heterocycles represents a valuable functionality to reach novel 5-hydroxyethylidene derivatives difficult to obtain by other methods.  相似文献   
699.
Several acridine derivatives were synthesized and their anti-proliferative activity was determined. The most active molecules were derivatives of 5-methylacridine-4-carboxylic acid. The DNA binding properties of the synthesized acridines were analyzed by competitive dialysis and compared with the anti-proliferative activities. While inactive acridine derivatives showed high selectivity for G-quadruplex structures, the most active 5-methylacridine-4-carboxamide derivatives had high affinity for DNA but showed poor specificity. An NMR titration study was performed with the most active 5-methylacridine-4-carboxamide, confirming the high affinity of this compound for both duplex and quadruplex DNAs.  相似文献   
700.
The harmonic model is the most popular approximation for estimating the “configurational” entropy of a solute in molecular mechanics/Poisson‐Boltzmann solvent accessible surface area (MM/PBSA)‐type binding free energy calculations. Here, we investigate the influence of the solvent representation in the harmonic model by comparing estimates of changes in the vibrational entropies for 30 trypsin/ligand complexes on ligand binding. Second derivatives of Amber generalized Born (GB) solvation models are available in the nucleic acid builder code. They allow one to use these models for the calculation of vibrational entropies instead of using a simpler solvation model based on a distance‐dependent dielectric (DDD) constant. Estimates of changes in the vibrational entropies obtained with a DDD model are systematically and significantly larger, by on average, 6 kcal mol?1 (at T = 300 K), than estimates obtained with a GB model and so are more favorable for complex formation. The difference becomes larger the more the vibrational entropy contribution disfavors complex formation, that is, the larger the ligand is (for the complexes considered here). A structural decomposition of the estimates into per‐residue contributions reveals polar interactions between the ligand and the surrounding protein, in particular involving charged nitrogens, as a main source of the differences. Snapshots minimized with the DDD model showed a structural deviation from snapshots minimized in explicit water that is larger by, on average, 0.5 Å RMSD compared to snapshots that were minimized with GBHCT. As experimental vibrational entropies of biomacromolecules are elusive, there is no direct way to establish a solvent model's superiority. Thus, we can only recommend using the GB harmonic model for vibrational entropy calculations based on the reasoning that smaller structural deviations should point to the implicit solvent model that closer approximates the energy landscape of the solute in explicit solvent. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号