首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   444篇
  免费   30篇
  国内免费   3篇
化学   118篇
力学   138篇
数学   127篇
物理学   94篇
  2024年   2篇
  2023年   3篇
  2022年   6篇
  2021年   18篇
  2020年   19篇
  2019年   21篇
  2018年   36篇
  2017年   21篇
  2016年   29篇
  2015年   13篇
  2014年   17篇
  2013年   17篇
  2012年   33篇
  2011年   57篇
  2010年   35篇
  2009年   35篇
  2008年   41篇
  2007年   16篇
  2006年   6篇
  2005年   7篇
  2004年   10篇
  2003年   10篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有477条查询结果,搜索用时 160 毫秒
431.
The assumption that a fluid adheres to a solid boundary (‘no-slip’ boundary condition) is one of the central tenets of the Navier-Stokes theory. However, there are situations wherein this assumption does not hold. In this communication we examine the effects of slip at the wall when an Oldroyd 6-constant fluid is considered in a channel. The slip assumed depends on the shear stress at the wall. The three non-linear problems are solved using homotopy analysis method (HAM). The results for the velocity profiles are presented and discussed. Received: January 13, 2004; revised: September 7, 2004  相似文献   
432.
In this study, we investigate the heat transfer problem in a viscous fluid over an oscillatory infinite sheet with slip condition. The sheet is moved back and forth in its own plane. The derived problem involves a dimensionless parameter indicating the relative magnitude of frequency to sheet stretching rate. A system of non‐linear partial differential equations is solved numerically using the finite‐difference scheme, in which a coordinate transformation is employed to transform the semi‐infinite physical space to a bounded computational domain. The physical features of interesting parameters on the velocity and temperature distributions are shown graphically and discussed. The values of the skin‐friction coefficient and the local Nusselt number are given in tabular form. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
433.
The aim of the present study is to investigate the flow of the Casson fluid by an inclined stretching cylinder. A heat transfer analysis is carried out in the presence of thermal radiation and viscous dissipation effects. The temperature dependent thermal conductivity of the Casson fluid is considered. The relevant equations are first simplified under usual boundary layer assumptions, and then transformed into ordinary differential equations by suitable transformations. The transformed ordinary differential equations are computed for the series solutions of velocity and temperature. A convergence analysis is shown explicitly. Velocity and temperature fields are discussed for different physical parameters by graphs and numerical values. It is found that the velocity decreases with the increase in the angle of inclination while increases with the increase in the mixed convection parameter. The enhancement in the thermal conductivity and radiation effects corresponds to a higher fluid temperature. It is also found that heat transfer is more pronounced in a cylinder when it is compared with a flat plate. The thermal boundary layer thickness increases with the increase in the Eckert number. The radiation and variable thermal conductivity decreases the heat transfer rate at the surface.  相似文献   
434.
" Analysis is performed to study the slip effects on the peristaltic flow of non-Newtonian fluid in a curved channel with wall properties. The resulting nonlinear partial differential equations are transformed to a single ordinary differential equation in a stream function by using the assumptions of long wavelength and low Reynolds number. This differential equation is solved numerically by employing the built-in routine for solving nonlinear boundary value problems (BVPs) through the software Mathematica. In addition, the analytic solutions for small Deborah number are computed with a regular perturbation technique. It is noticed that the symmetry of bolus is destroyed in a curved channel. An intensification in the slip effect results in a larger magnitude of axial velocity. Further, the size and circulation of the trapped boluses increase with an increase in the slip parameter. Different from the case of planar channel, the axial velocity profiles are tilted towards the lower part of the channel. A comparative study between analytic and numerical solutions shows excellent agreement.  相似文献   
435.
We investigate the Cattaneo–Christov heat flux model for a two-dimensional laminar boundary layer flow of an incompressible Oldroyd-B fluid over a linearly stretching sheet. Mathematical formulation of the boundary layer problems is given. The nonlinear partial differential equations are converted into the ordinary differential equations using similarity transformations. The dimensionless velocity and temperature profiles are obtained through optimal homotopy analysis method(OHAM). The influences of the physical parameters on the velocity and the temperature are pointed out. The results show that the temperature and the thermal boundary layer thickness are smaller in the Cattaneo–Christov heat flux model than those in the Fourier's law of heat conduction.  相似文献   
436.
A two-dimensional magnetohydrodynamic boundary layer flow of the Eyring–Powell fluid on a stretching surface in the presence of thermal radiation and Joule heating is analyzed. The Soret and Dufour effects are taken into account. Partial differential equations are reduced to a system of ordinary differential equations, and series solutions of the resulting system are derived. Velocity, temperature, and concentration profiles are obtained. The skin friction coefficient and the local Nusselt and Sherwood numbers are computed and analyzed.  相似文献   
437.
A mixed convection flow of an Oldroyd-B fluid in the presence of thermal radiation is investigated. The flow is induced by an inclined stretching surface. The boundary layer equations of the Oldroyd-B fluid in the presence of heat transfer are used. Appropriate transformations reduce partial differential equations to ordinary differential equations. A computational analysis is performed for convergent series solutions. The values of the local Nusselt number are numerically analyzed. The effects of various parameters on velocity and temperature are discussed.  相似文献   
438.
An analysis of a three-dimensional viscoelastic fluid flow over an exponentially stretching surface is carried out in the presence of heat transfer. Constitutive equations of a second-grade fluid are employed. The governing boundary layer equations are reduced by appropriate transformations to ordinary differential equations. Series solutions of these equations are found, and their convergence is discussed. The influence of the prominent parameters involved in the heat transfer process is analyzed. It is found that the effects of the Prandtl number, viscoelastic parameter, velocity ratio parameter, and temperature exponent on the Nusselt number are qualitatively similar.  相似文献   
439.
The Cattaneo-Christov heat flux in the two-dimensional (2D) flow of a third-grade fluid towards an exponentially stretching sheet is investigated. The energy equation is considered through thermal relaxation. Similarity transformations are accounted to obtain the ordinary differential systems. The converted non-dimensional equations are solved for the series solutions. The convergence analysis of the computed solutions is reported. The graphical results of the velocity and temperature profiles are plotted and elaborated in detail. The results show that the thermal relaxation enhances the temperature gradient while reduces the temperature profile.  相似文献   
440.
The effects of axisymmetric flow of a Powell-Eyring fluid over an impermeable radially stretching surface are presented. Characteristics of the heat transfer process are analyzed with a more realistic condition named the convective boundary condition. Governing equations for the flow problem are derived by the boundary layer approximations. The modeled highly coupled partial differential system is converted into a system of ordinary differential equations with acceptable similarity transformations. The convergent series solutions for the resulting system are constructed and analyzed. Optimal values are obtained and presented in a numerical form using an optimal homotopy analysis method (OHAM). The rheological characteristics of different parameters of the velocity and temperature profiles are presented graphically. Tabular variations of the skin friction coefficient and the Nusselt number are also calculated. It is observed that the temperature distribution shows opposite behavior for Prandtl and Biot numbers. Furthermore, the rate of heating/cooling is higher for both the Prandtl and Biot numbers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号