首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3258篇
  免费   132篇
  国内免费   32篇
化学   2362篇
晶体学   16篇
力学   143篇
数学   298篇
物理学   603篇
  2023年   27篇
  2022年   53篇
  2021年   123篇
  2020年   120篇
  2019年   114篇
  2018年   123篇
  2017年   94篇
  2016年   152篇
  2015年   115篇
  2014年   155篇
  2013年   343篇
  2012年   219篇
  2011年   229篇
  2010年   180篇
  2009年   143篇
  2008年   168篇
  2007年   127篇
  2006年   120篇
  2005年   68篇
  2004年   87篇
  2003年   81篇
  2002年   57篇
  2001年   29篇
  2000年   34篇
  1999年   29篇
  1998年   20篇
  1997年   15篇
  1996年   24篇
  1995年   15篇
  1994年   18篇
  1993年   20篇
  1992年   23篇
  1991年   23篇
  1990年   17篇
  1989年   20篇
  1988年   24篇
  1987年   13篇
  1986年   9篇
  1985年   22篇
  1984年   13篇
  1983年   8篇
  1982年   18篇
  1981年   17篇
  1980年   17篇
  1979年   9篇
  1978年   10篇
  1976年   8篇
  1975年   9篇
  1974年   13篇
  1973年   11篇
排序方式: 共有3422条查询结果,搜索用时 15 毫秒
121.
Journal of Thermal Analysis and Calorimetry - The significant bioconvection phenomenon with the utilization of nanoparticles encountered fundamental industrial and technological applications in...  相似文献   
122.
We present a facile and efficient method for modifying the surface of silica-coated Fe3O4 magnetic nanoparticles (MNPs) with bis(pyrazolyl) triazine ruthenium(II) complex [ MNPs@BPT–Ru (II) ] . Field emission-scanning electron microscopy, thermogravimetric/derivative thermogravimetry analysis, X-ray powder diffraction, Fourier-transform infrared spectroscopy, vibrating sample magnetometry, and energy-dispersive X-ray spectrometry analyses were employed for characterizing the structure of these nanoparticles. MNPs@BPT–Ru(II) nanoparticles proved to be a magnetic, reusable, and heterogeneous catalyst for the hydrogen transfer reduction of ketone derivatives. In addition, highly pure products were obtained with excellent yields in relatively short times in the presence of this catalyst. A comparison of this catalyst with those previously used for the hydrogen transfer reactions proved the uniqueness of MNPs@BPT–Ru(II) nanoparticle which is due to its inherent magnetic properties and large surface area. The presented method also had other advantages such as simple reaction conditions, eco-friendliness, high recovery ability, easy work-up, and low cost.  相似文献   
123.
The reaction of the newly synthesized ligand, 2‐isonicotinoyl‐N‐phenylhydrazine‐1‐carbothioamide (H3L), with acetate salt of Co (II), Cu (II),Ni (II) and Zn (II) led to isolation of four solid complexes. The ligand and complexes structure elucidation were based on elemental analyses, spectral analyses (IR, UV–Visible, 1H and13C‐NMR, MS and ESR), TGA, molar conductivity and magnetic moments measurements. The results indicated that the ligand exists in the thioketo form, while on coordination to the metal ions; it behaves as mono‐negative bidentate chelate and exists in enol form. The optical band gap measurements of the ligand and its metal complexes are in the range 3.83–4.48 eV indicating their semi‐conducting character. The cytotoxicity examination of H3L and its Zn (II) complex showed that the ligand have very strong cytotoxicity against both HCT‐116 and HEPG‐2 cell lines while, Zn (II) complex has moderate activity.  相似文献   
124.
Tungstate ions were successfully loaded onto triazine‐based ionic liquid‐functionalized magnetic nanoparticles through an anion exchange process. The use of triazine core for creating ionic liquid led to the immobilization of high amounts of WO42?. The resulting catalyst showed high activity and selectivity in the oxidation of sulfides to sulfoxides with H2O2 as a green oxidant at room temperature. In addition, due to the presence of ammonium groups in the catalyst structure, water dispersibility of the catalyst was increased. More important, the catalyst was magnetically recovered and reused for up to six runs without any marked decrease of activity and selectivity. Finally, easy gram‐scale oxidation of methylphenyl sulfide as well as fast separation of catalyst and product makes the protocol economical and industrially applicable.  相似文献   
125.
A heterogeneous magnetic copper catalyst was prepared via anchoring of copper sulfate onto multi‐layered poly(2‐dimethylaminoethyl acrylamide)‐coated magnetic nanoparticles and was characterized using various techniques. The catalyst was found to be active, effective and selective for one‐pot three‐component reaction of alkyl halide, sodium azide and alkyne, known as copper‐catalyzed click synthesis of 1,2,3‐triazoles. As little as 0.3 mol% of catalyst was found to be effective under the optimum conditions. The catalyst could also be recycled and reused up to seven times without significant loss of activity. Thermal stability, high loading level of copper on catalyst, broad diversity of alkyl/benzyl/allyl bromide/chloride and alkyl/aryl terminal alkynes without isolation of azide intermediate, and good to excellent yields of products make this procedure highly economical. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
126.
Bending of the A = A (A of the group IVA) double bond neighboring is rationalized by the hyperconjugation phenomenon analysis. The bending is also observed for the high sized linear, cyclic or graphene-like compounds that imply the conjugated double bonds. The electronic delocalization takes place between occupied σ(π) and unoccupied π*(σ*) orbitals especially for compound implying Si and Ge atoms. Leading to rippled structure, this phenomenon affects the silicene and germane thickness sheets and probably would have some consequences on the properties of such compounds when they will be involved in the industries in the future. However we introduce a new parameter to assess the thickness of graphenic structures when the hyperconjugation takes place in the bonding framework. The study has been undertaken at high levels of theory like B3LYP/6-311 + G(3df,2p).  相似文献   
127.
128.
129.
Hanafi  Rasha  Spahn-Langguth  Hilde  Mahran  Laila  Heikal  Ola  Hanafy  Abeer  Rieger  Hans  Moln&#;r  Imre  Aboul-Enein  Hassan Y. 《Chromatographia》2012,75(9-10):469-477

Following administration of the acidic drug tolmetin (TOL) anaphylactic reactions occurred, which have been hypothesized to be related to the formation of reactive acyl glucuronides. Recently, glutathione adducts have been detected upon incubation of TOL with human liver microsomal preparations, which proved that oxidative activation might also be a pathway of formation of reactive—possibly toxic—glutathione metabolites of TOL. The aim of this work was to develop a new and robust HPLC method to investigate the in vivo effect of 2 coadministered drugs/nutritional supplements on the kinetics of TOL in rats (cimetidine; CIM) known to be a potent inhibitor of CYP3A4, an enzyme that catalyzes the oxidative metabolism and Quercetin; and QUE which induces UGT1A6, an enzyme involved in glucuronidation of acidic drugs. DryLab®, a computer simulation software package, was used to assist in the development and optimization of the HPLC method used for separation of TOL and the two potential kinetic modulators together with three potential internal standards (zomepirac, carvedilol and fexofenadine). The method was validated in biological samples obtained from rats. Non-compartmental pharmacokinetic analysis of data obtained from plasma and rat liver tissue showed significantly higher concentrations of TOL in the presence of CIM; and significantly longer elimination half-life lives in presence of QUE, which implies that drugs or food components interacting with CYP3A4 cause alteration in the metabolic oxidative biotransformation of TOL in vivo leading to accumulation of TOL in the body through a decrease of its clearance. These findings might account for to the side-effects associated with TOL when co-administered with such kinetic modulators.

  相似文献   
130.
Since few examples of 10,11‐didehydrogenated (3‐ethynyl) cinchona alkaloids have been utilized as organocatalysts in asymmetric reaction, we synthesized 10,11‐didehydrogenated cinchonidine. The 3‐vinyl group of cinchonidine was transformed into a 3‐ethynyl functionality. Based on the resulting 10,11‐didehydrogenated cinchonidine, the corresponding quaternary ammonium salt and its dimers were prepared. The ion‐exchange reaction between the quaternary ammonium salt and sodium sulfonate produced the quaternary ammonium sulfonate as a stable ionic compound. Chiral ionic polymers were then synthesized by the ion‐exchange polymerization of the 10,11‐didehydrogenated cinchonidinium salt dimer and a disulfonate. The chiral ionic polymers were found to be capable of efficiently catalyzing the asymmetric alkylation of N‐(diphenylmethylene)glycine tert‐butyl ester. The enantioselectivities obtained with the polymeric catalysts were higher than those obtained with the corresponding monomeric catalyst. Dimers of 10,11‐didehydrogenated cinchonidinium salts were prepared. Treatment of the dimer with disodium disulfonate gave the chiral ionic polymers, which showed high catalytic activity in asymmetric benzylation of N‐(diphenylmethylen)glycine tert‐butyl ester. The polymeric catalysts were reused several times without the loss of catalytic activity. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 621–627  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号