首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   531篇
  免费   31篇
  国内免费   3篇
化学   253篇
晶体学   1篇
力学   56篇
数学   105篇
物理学   150篇
  2024年   1篇
  2023年   4篇
  2022年   8篇
  2021年   29篇
  2020年   29篇
  2019年   22篇
  2018年   38篇
  2017年   36篇
  2016年   52篇
  2015年   34篇
  2014年   24篇
  2013年   69篇
  2012年   40篇
  2011年   50篇
  2010年   27篇
  2009年   28篇
  2008年   18篇
  2007年   12篇
  2006年   11篇
  2005年   9篇
  2004年   1篇
  2003年   7篇
  2002年   4篇
  2001年   1篇
  1999年   3篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1989年   1篇
  1984年   2篇
排序方式: 共有565条查询结果,搜索用时 109 毫秒
91.
In this paper, we have improved the fast ignition scheme in order to have more authority needed for high-energy-gain. Due to the more penetrability and energy deposition of the particle beams in fusion targets, we employ a laser-to-ion converter foil as a scheme for generating energetic ion beams to ignite the fusion fuel. We find the favorable intensity and wavelength of incident laser by evaluating the laser-proton conversion gain. By calculating the source-target distance, proton beam power and energy are estimated. Our analysis is generalized to the plasma degeneracy effects which can increase the fusion gain several orders of magnitude by decreasing the ion-electron collisions in the plasma. It is found that the wavelength of 0.53 μm and the intensity of about 1020 W/cm2, by saving about 10% conversion coefficient, are the suitable measured values for converting a laser into protons. Besides, stopping power and fusion burn calculations have been done in degenerate and non-degenerate plasma mediums. The results indicate that in the presence of degeneracy, the rate of fusion enhances.  相似文献   
92.
This paper proposes a design for all-optical NOR logic gate, based on Mach-Zehnder interferometer (MZI) using quantum-dot semiconductor optical amplifier (QD-SOA). In this regard, a theoretical model for an ultrafast all-optical signal processor is developed using QD-SOA to achieve high bit rate operation. We have demonstrated the NOR gate operation in two cases of with and without an optical control pulse. Simulations have been carried out at data bit rates 160 Gb/s, 200 Gb/s, and 250 Gb/s for the case that control pulse is not applied, and also at data bit rates 1 Tb/s and 2 Tb/s in presence of control pulse which leads to improvement of gain recovery time and ultrafast NOR logic operation. In addition, quality factors of the output signals in presence and without the control pulse at different bit rates with different bias currents have been investigated for pseudo-random binary sequence (PRBS) of word length 28–1.  相似文献   
93.
This paper considers the stability and eigenvalue analyses for a bladed rotor which goes under cylindrical and conical whirling. The model consists of a group of flexible blades which are modeled by beams and rigid disk on the elastic bearings. The model is a Hamiltonian system which is perturbed by small dissipative forces. Krein’s theorem reveals that the forward whirling mode and the blade collective motion may cause instability when their frequencies cut themselves in the Campbell diagram. An unstable interaction between the blades and the conical whirling is discovered. The eigenmode and eigenvalue evolutions are determined on the stability boundary. The bifurcation analysis is performed by applying multiple scales method around the stability boundary. It is shown that the damping distribution between the blades and the bearings may shift the unstable mode.  相似文献   
94.
The modal interaction which leads to Hamiltonian Hopf bifurcation is studied for a nonlinear rotating bladed-disk system. The model, which is discussed in the paper, is a Jeffcott rotor carrying a number of planar blades which bend in the plane of the motion. The rigid rotating disk is supported on nonlinear bearings. It is supposed that this dynamical system is a Hamiltonian system which is perturbed by small dissipative and nonlinear forces. Krein’s theorem is employed for obtaining a stability criterion. The nonlinear eigenvalue equations on the stability boundary are turned into ordinary differential equations (ODEs) by differentiating them over the rotating speed. By solving these ODEs, the eigenmodes and the eigenvalues on the stability boundary are obtained. The bifurcation analysis is performed by applying multiple scales method around the boundary. The rotor nonlinear behavior and damping effects are studied for different conditions on the rotating speed and nonlinearity type by the bifurcation equation. It is shown that the damping distribution between the blades and bearings may shift the unstable mode. Depending on the nonlinearity type, subcritical and supercritical Hopf bifurcation are possible.  相似文献   
95.
One of the most important features of nanofluids is their thermal conductivity. In this article, a new model for thermal conductivity is proposed based on the combination of a statistical model and thermal convection caused by Brownian motion of nanoparticles with considering the effect of interfacial nanolayers among nanoparticles and base fluids. This model is compared with Al2O3 in deionized water and CuO in deionized water (based nanofluids of spherical particles) using a number of theoretical and experimental thermal conductivity models, after that the experimental results have been made available in the open literature. In this model, an interfacial nanolayer is influenced directly on both parts of static and dynamic effective thermal conductivity. The present model shows good agreement with the experimental result of nanofluids and gives better predictions compared to models used for nanofluids in this article. This model is purely theoretical and in order to achieve it, experimental results have no effect.  相似文献   
96.
According to UV-visible spectroscopy, X-ray diffraction spectrometry, dynamic light scattering, Fourier transform infrared spectroscopy, electron paramagnetic resonance spectroscopy, transmission electron microscopy, scanning electron microscopy and X-ray photoelectron spectroscopy, nano-sized manganese oxides are proposed as active catalysts for water oxidation in the reaction of some manganese complexes and cerium(iv) ammonium nitrate.  相似文献   
97.
Neutron imaging is extended rapidly as a means of non-destructive testing (NDT) of materials. Various effective parameters on the image quality are needed to be studied for neutron radiography system with good resolution. In the present study a portable system of neutron radiography has been designed using 241Am–Be neutron source. The effective collimator parameters were calculated to obtain relatively pure, collimated and uniform neutron beam. All simulations were carried out in two stages using MCNPX Monte Carlo code. In the first stage, different collimator configurations were investigated and the appropriate design was selected based on maximum intensity and uniformity of neutron flux at the image plane in the outlet of collimator. Then, the overall system including source, collimator and sample was simulated for achieving radiographic images of standard samples. Normalized thermal neutron fluence of 2.61×10?5 cm?2 per source particle with n/γ ratio of 1.92×105 cm?2 μSv?1 could be obtained at beam port of the designed collimator. Quality of images was assessed for two standard samples, using radiographic imaging capability in MCNPX. The collimated neutron beam in the designed system could be useful in a transportable exposure module for neutron radiography application.  相似文献   
98.
99.
Oxidation and melting behaviors of AZ91D granules throughout the in‐situ melting process using flux were investigated. The granules were heated under unprotected environment at four different temperatures between 650 and 800 °C, for the durations of 30 and 60 min. The products of heating process were characterized macroscopically and the oxides formed on the granules were examined using field emission scanning electron microscope, energy dispersive X‐ray spectroscopy and X‐ray diffraction analysis. Thermal analysis was used to reveal the response of the granules to heating during the in‐situ melting. The results showed that the granules experienced severe oxidation even in the presence of the flux, and significant amount of them changed to a powdered state due to oxidation and combustion, especially at 800 °C. It was discovered that the granules melted during heating; however, oxides formed on their surface encapsulated the molten metal and prevented the liquids from merging. The results also revealed that increasing heating temperature and time enhanced mold‐magnesium reaction resulted in the entrance of mold materials into the oxidation residues.  相似文献   
100.
The particle-hole continuum in the Dirac sea of graphene has a unique window underneath, which in principle leaves room for bound state formation in the triplet particle-hole channel (Baskaran and Jafari 2002 Phys. Rev. Lett. 89 016402). In this work, we construct appropriate triplet particle-hole operators and, using a repulsive Hubbard-type effective interaction, we employ equations of motion to derive approximate eigenvalue equations for such triplet operators. While the secular equation for the spin density fluctuations gives rise to an equation which is second order in the strength of the short range interaction, the explicit construction of the triplet operators obtained here shows that, in terms of these operators, the second-order equation can be factorized to two first-order equations, one of which gives rise to a solution below the particle-hole continuum of Dirac electrons in undoped graphene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号