首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   3篇
化学   140篇
晶体学   1篇
力学   7篇
数学   14篇
物理学   8篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   6篇
  2012年   11篇
  2011年   10篇
  2010年   1篇
  2009年   7篇
  2008年   11篇
  2007年   7篇
  2006年   4篇
  2005年   11篇
  2004年   7篇
  2003年   5篇
  2002年   5篇
  2001年   6篇
  2000年   5篇
  1999年   6篇
  1998年   5篇
  1997年   5篇
  1996年   3篇
  1995年   4篇
  1994年   8篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1979年   1篇
  1974年   2篇
  1973年   1篇
  1966年   2篇
  1965年   1篇
  1962年   3篇
  1960年   2篇
排序方式: 共有170条查询结果,搜索用时 312 毫秒
51.
This paper gives an insight into making a mathematical bridge between the parabolic‐parabolic signal‐dependent chemotaxis system and its parabolic‐elliptic version. To be more precise, this paper deals with convergence of a solution for the parabolic‐parabolic chemotaxis system with strong signal sensitivity to that for the parabolic‐elliptic chemotaxis system where Ω is a bounded domain in () with smooth boundary, is a constant and χ is a function generalizing In chemotaxis systems parabolic‐elliptic systems often gave some guide to methods and results for parabolic‐parabolic systems. However, the relation between parabolic‐elliptic systems and parabolic‐parabolic systems has not been studied except for the case that . Namely, in the case that Ω is a bounded domain, it still remains to analyze on the following question: Does a solution of the parabolic‐parabolic system converge to that of the parabolic‐elliptic system as ? This paper gives some positive answer in the chemotaxis system with strong signal sensitivity.  相似文献   
52.
Adsorption of ethanol onto silica surfaces from ethanol-cyclohexane binary liquids was investigated by a combination of colloidal probe atomic force microscopy, adsorption excess isotherm measurement, and FTIR spectroscopy using the attenuated total reflection (ATR) mode. An unusually long-range attraction was found between the silica (glass) surfaces in the presence of ethanol in the concentration range of 0.1-1.4 mol % at room temperature. At 0.1 mol % ethanol, the attraction appeared at a distance of 35 +/- 3 nm and turned into a repulsion below 3.5 +/- 1.5 nm upon compression. Half of the attraction range agreed with the adsorption layer thickness estimated from the adsorption excess amount by assuming that the adsorption layer was composed only of ethanol. This indicated that the observed long-range attraction was caused by the contact of opposed adsorption layers of ethanol on the silica surfaces and that the sharp increase of repulsion at shorter distance was caused by the overlap of structured ethanol clusters adjacent to the surface. ATR-FTIR spectra demonstrated that ethanol adsorbed on the silica (silicon oxide) surfaces formed hydrogen-bonded clusters (polymers). Practically no ethanol clusters were formed on the hydrogen-terminated silicon surface. These results indicated that the cluster formation involved hydrogen-bonding interactions between surface silanol groups and ethanol hydroxyl groups in addition to those between ethanol hydroxyl groups. At higher temperatures (30-50 degrees C), the range and the strength of attraction decreased owing to the decrease in the hydrogen-bonded clusters monitored by FTIR spectroscopy, reflecting the nature of hydrogen bonding. The range and the strength of the attraction also changed when the ethanol concentration increased: The long-range attraction started to decrease at 0.6 mol % ethanol at room temperature and disappeared at 1.4 mol % while the adsorption excess amount remained almost constant as did the FTIR peak intensity of the hydrogen-bonded OH group of adsorbed ethanol. In the bulk solution, ethanol clusters appeared at 0.5 mol % ethanol; thus, this change in the attraction could be accounted for in terms of the exchange of ethanol molecules between the surface clusters and bulk clusters. The novel self-assembled structure of alcohol on the surface, found in this study may be called a "surface molecular macrocluster" because the hydrogen-bonded clusters extend to distances of ca. 20 nm longer than the typical sizes of common clusters, 2-4 nm, of alcohol (e.g., ethanol).  相似文献   
53.
Amorphous alumina-silicas were prepared from a tetra-alkoxysilane and anhydrous aluminum trichloride or an aluminum alkoxide by a sol-gel process using 2-methyl-2,4-pentanediol, pinacol, 1,2-propanediol, 2,3-butanediol or ethylene glycol as the solvent or complexing agent, and the effect of diols and alkoxy groups on the physical and chemical properties of the alumina-silicas was examined. When the diol or the alkoxy group was bulky, the alumina-silicas had relatively larger micropores, a larger pore volume and higher surface areas. In the conversion of methanol catalyzed by the alumina-silicas, the bulkier diols and alkoxides gave catalysts that produced dimethyl ether in higher yield and hydrocarbons in lower yield. Thus, when ethylene glycol was used as the diol, the best catalyst for the production of hydrocarbons, especially the production of olefins such as ethylene, propylene and butene, was obtained. Furthermore, in comparison with alumina-silica prepared by a traditional kneading process, it was found that the sol-gel alumina-silica could efficiently convert methanol to dimethyl ether and hydrocarbons, but the material prepared by kneading had a very low conversion of methanol to other compounds.  相似文献   
54.
A simple but novel compound, S-1-methoxy-1-(3,5-dimethoxy-4-hydroxyphenyl)ethane, was isolated as a moderately antioxidative compound from rape (Brassica campestris L. subsp. napus) oil cake together with 5 known compounds. Three of these compounds, indolacetonitrile, 4-hydroxyindolacetonitrile, and 4-hydroxyphenylacetonitrile, showed strong antioxidative activity evaluated by the ferric thiocyanate method.  相似文献   
55.
Photosensitized DNA damage participates in solar-UV carcinogenesis, photogenotoxicity and phototoxicity. A chemoprevention of photosensitized DNA damage is one of the most important methods for the above phototoxic effects. In this study, the chemopreventive action of xanthone (XAN) derivatives (bellidifolin [BEL], gentiacaulein [GEN], norswertianin [NOR] and swerchirin [SWE]) on DNA damage photosensitized by riboflavin was demonstrated using [32P]-5'-end-labeled DNA fragments obtained from genes relevant to human cancer. GEN and NOR effectively inhibited the formation of piperidine-labile products at consecutive G residues by photoexcited riboflavin, whereas BEL and SWE did not show significant inhibition of DNA damage. The four XAN derivatives decrease the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo), an oxidative product of G, by photoexcited riboflavin. The preventive action for the 8-oxodGuo formation of these XAN derivatives increased in the following order: GEN>NOR>BEL>SWE. A fluorescence spectroscopic study and ab initio molecular orbital calculations suggested that the prevention of DNA photodamage is because of the quenching of the triplet excited state of riboflavin by XAN derivatives through electron transfer. This chemoprevention is based on neither antioxidation nor a physical sunscreen effect; rather, it is based on the quenching of a photosensitizer. In conclusion, XAN derivatives, especially GEN, may act as novel chemopreventive agents by the quenching mechanism of an excited photosensitizer.  相似文献   
56.
Zeolites adsorb biopolymers on their surface and may be suitable as a new type of chromatographic carrier material for proteins, nucleic acids, and their conjugates. We report here various parameters that influence the adsorption of biopolymers on synthesized zeolites with regard to the Si/Al2 ratio and three-dimensional structure. There are three physicochemical principles that may underly the adsorption: 1) below the isoelectric point (pI), mainly Coulombic attraction similar to ion-exchange chromatography; 2) at pI, hydrophobic interactions (a kind of van der Waals attraction) plus the three-dimensional mesopore structure; and 3) above pI, the sum of the Coulombic repulsion and attraction forces, such as the hydrophobic interaction, and also substitution reaction of water on the Al molecule with a protein amino-base. At high Si/Al2 ratio in the presence of a small amount of Al and with mesopores between the zeolite particles, maximal adsorption was seen at pI and was suggested to be dependent on the number of hydrophobic interaction points on the mesopores, and their morphology. The application of zeolites to biochemistry and biotechnology is also discussed.  相似文献   
57.
Hollow spherical particles with protein-silica hybrid shell structures have been synthesized through a combination of the catalytic activity of the protein and sonochemical treatment; the morphologies of the particles were controlled by varying the protein concentration.  相似文献   
58.
59.
We used both localized and periodic calculations on a series of monovalent (Li+, Na+, K+, Rb+, Cs+) and divalent (Mg2+, Ca2+, Sr2+, Ba2+) cations to monitor their effect on the swelling of clays. The activity order obtained for the exchangeable cations among all the monovalent and divalent series studied: Ca2+ > Sr2+ > Mg2+ > Rb+ > Ba2+ > Na+ > Li+ > Cs+ > K+. We have shown that, in case of dioctahedral smectite, the hydroxyl groups play a major role in their interaction with water and other polar molecules in the presence of an interlayer cation. We studied both type of clays, with a different surface structure and with/without water using a periodic calculation. Interlayer cations and charged 2:1 clay surfaces interact strongly with polar solvents; when it is in an aqueous medium, clay expands and the phenomenon is known as crystalline swelling. The extent of swelling is controlled by a balance between relatively strong swelling forces and electrostatic forces of attraction between the negatively charged phyllosilicate layer and the positively charged interlayer cation. We have calculated the solvation energy at the first hydration shell of an exchangeable cation, but the results do not correspond directly to the experimental d-spacing values. A novel quantitative scale is proposed with the numbers generated by the relative nucleophilicity of the active cation sites in their hydrated state through Fukui functions within the helm of the hard soft acid base principle. The solvation effect thus measured show a perfect match with experiment, which proposes that the reactivity index calculation with a first hydration shell could rationalize the swelling mechanism for exchangeable cations. The conformers after electron donation or acceptance propose the swelling mechanism for monovalent and divalent cations.  相似文献   
60.
A simple method to synthesize (+/-)-2-O-(4-coumaroyl)-3-(4-hydroxyphenyl)lactic acid (1), a key intermediate in rosmarinic acid biosynthesis in higher plant cells, was established by condensation of protected 4-coumaric acid and (+/-)-3-(4-hydroxyphenyl)lactic acid followed by deprotection. A stable supply of 1 thus attained will lead to biochemical and molecular biological characterization of later steps of rosmarinic acid biosynthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号