首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   635篇
  免费   43篇
  国内免费   5篇
化学   467篇
晶体学   3篇
力学   24篇
数学   51篇
物理学   138篇
  2022年   6篇
  2021年   17篇
  2020年   12篇
  2019年   7篇
  2018年   14篇
  2017年   8篇
  2016年   16篇
  2015年   12篇
  2014年   21篇
  2013年   38篇
  2012年   34篇
  2011年   51篇
  2010年   31篇
  2009年   22篇
  2008年   39篇
  2007年   42篇
  2006年   38篇
  2005年   27篇
  2004年   27篇
  2003年   18篇
  2002年   22篇
  2001年   15篇
  2000年   19篇
  1999年   7篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   11篇
  1994年   10篇
  1993年   13篇
  1992年   10篇
  1991年   5篇
  1990年   8篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1985年   5篇
  1984年   3篇
  1982年   5篇
  1980年   7篇
  1979年   3篇
  1978年   8篇
  1977年   3篇
  1976年   3篇
  1975年   4篇
  1974年   6篇
  1973年   2篇
  1972年   2篇
  1970年   3篇
  1927年   1篇
排序方式: 共有683条查询结果,搜索用时 359 毫秒
71.
We demonstrate the fabrication of graphene liquid marbles as photothermal miniature reactors with precise temperature control for reaction kinetics modulation. Graphene liquid marbles show rapid and highly reproducible photothermal behavior while maintaining their excellent mechanical robustness. By tuning the applied laser power, swift regulation of graphene liquid marble’s surface temperature between 21–135 °C and its encapsulated water temperature between 21–74 °C are demonstrated. The temperature regulation modulates the reaction kinetics in our graphene liquid marble, achieving a 12‐fold superior reaction rate constant for methylene blue degradation than at room temperature.  相似文献   
72.
We report the observation of an unusual stripe-droplet transition in precompressed Langmuir monolayers consisting of mixtures of poly(ethylene) glycol (PEG) amphiphiles and phospholipids. This highly reproducible and fully reversible transition occurs at approximately zero surface pressure during expansion (or compression) of the monolayer following initial compression into a two-dimensional solid phase. It is characterized by spontaneous emergence of an extended, disordered stripe-like morphology from an optically homogeneous phase during gradual expansion. These stripe patterns appear as a transient feature and continuously progress, involving gradual coarsening and ultimate transformation into a droplet morphology upon further expansion. Furthermore, varying relative concentrations of the two amphiphiles and utilizing amphiphiles with considerably longer ethylene glycol headgroups reveal that this pattern evolution occurs in narrow concentration regimes, values of which depend on ethylene oxide headgroup size. These morphological transitions are reminiscent of those seen during a passage through a critical point by variations in thermodynamic parameters (e.g., temperature or pressure) as well as those involving spinodal decomposition. While the precise mechanism cannot be ascertained using present experiments alone, our observations can be reconciled in terms of modulations in competing interactions prompted by the pancake-mushroom-brush conformational transitions of the ethylene glycol headgroup. This in turn suggests that the conformational degree of freedom represents an independent order parameter, or a switch, which can induce large-scale structural reorganization in amphiphilic monolayers. Because molecular conformational changes are pervasive in biological membranes, we speculate that such conformational transition-induced pattern evolution might provide a physical mechanism by which membrane processes are amplified.  相似文献   
73.
Self-assembly of nanometer-sized particles is an elegant and economical approach to achieve dense patterns over large areas beyond the resolution and throughput capabilities of electron-beam lithography. In this paper, we present results of self-assembly of oleylamine-capped gold nanoparticles with 8.0 ± 0.3 nm diameter into densely packed and well-ordered monolayers with center-to-center distance of ~11 nm. Self-assembly was done in a Langmuir-Blodgett trough and picked up onto Si substrates. The nanoparticles undesirably assembled within micrometer-sized "droplets" that were organic in nature. However, within these droplets, we observed that the addition of the excess ligand, oleylamine, drastically enhanced the self-assembly of the nanoparticles into monolayers with near-perfect ordering. This approach has the potential use in templated self-assembly of nanoparticles for rearranging poorly ordered assembly into a commensurate prepatterned substrate.  相似文献   
74.
Tan SN  Yong JW  Teo CC  Ge L  Chan YW  Hew CS 《Talanta》2011,83(3):891-898
Uncaria sinensis (Oliv.) Havil (Rubiaceae) has been used as an important Traditional Chinese Medicine (TCM) herb for the treatment of fevers and various nervous disorders. The major bioactive secondary metabolites from different classes of chemical compounds, i.e. organic acid, flavonoid and alkaloid, present in this TCM herb, namely catechin, caffeic acid, epicatechin and rhynchophylline, were extracted by microwave-assisted extraction (MAE) method with ultra-pure water as the extraction solvent. The optimal extraction conditions for this green solvent MAE method were found to be 100 °C for 20 min. The recoveries of the compounds were found to be comparable to that of heating under reflux using ultra-pure water for 60 min. The method precision (RSD, n = 6) was found to vary from 0.19% to 5.60% for the proposed method on different days for the secondary metabolites. Simultaneously, the key primary metabolites such as sucrose and phenylalanine for the biosynthesis of bioactive secondary metabolites were successfully characterized by GC-MS. Furthermore, an approach using the combination of primary and secondary metabolite profiling based on their chemical fingerprints with Principal Component Analysis (PCA) was successfully developed to evaluate the quality of U. sinensis obtained from different sources. This approach was shown to be feasible in discriminating U. sinensis from different origins and thus a potential application for the quality control of other medicinal herbs.  相似文献   
75.
Human CD38 is a novel multi-functional protein that acts not only as an antigen for B-lymphocyte activation, but also as an enzyme catalyzing the synthesis of a Ca(2+) messenger molecule, cyclic ADP-ribose, from NAD(+). It is well established that this novel Ca(2+) signaling enzyme is responsible for regulating a wide range of physiological functions. Based on the crystal structure of the CD38/NAD(+) complex, we synthesized a series of simplified N-substituted nicotinamide derivatives (Compound 1-14). A number of these compounds exhibited moderate inhibition of the NAD(+) utilizing activity of CD38, with Compound 4 showing the highest potency. The crystal structure of CD38/Compound 4 complex and computer simulation of Compound 7 docking to CD38 show a significant role of the nicotinamide moiety and the distal aromatic group of the compounds for substrate recognition by the active site of CD38. Biologically, we showed that both Compounds 4 and 7 effectively relaxed the agonist-induced contraction of muscle preparations from rats and guinea pigs. This study is a rational design of inhibitors for CD38 that exhibit important physiological effects, and can serve as a model for future drug development.  相似文献   
76.
Yeung PY  So CM  Lau CP  Kwong FY 《Organic letters》2011,13(4):648-651
An efficient palladium-catalyzed cyanation of aryl chlorides is established. In the presence of a highly effective Pd/CM-phos catalyst, cyanation of aryl chlorides proceeds at 70 °C in general, which is the mildest reaction temperature achieved so far for this process. Common functional groups such as keto, aldehyde, ester, nitrile and -NH(2), and heterocyclic coupling partners including N-H indoles are well tolerated. Moreover, a sterically hindered nonactivated ortho,ortho-disubstituted electrophile is shown to be a feasible coupling partner in cyanation.  相似文献   
77.
Wu Y  Li B  Mao F  Li X  Kwong FY 《Organic letters》2011,13(12):3258-3261
A palladium-catalyzed oxidative C-H bond functionalization/ortho-acylation of acetanilides using easily accessible aldehyde as the acyl source is described. In the presence of a Pd(TFA)(2) catalyst and tert-butylhydroperoxide at 90 °C in general, an array of ortho-acylacetanilides can be afforded in good yields.  相似文献   
78.
S-glutathionylation (Pr–SSG) is a specific post-translational modification of cysteine residues by the addition of glutathione. S-Glutathionylated proteins induced by oxidative or nitrosative stress play an essential role in understanding the pathogenesis of the aging and age-related disorder, such as Alzheimer’s disease (AD). The purpose of this research is to develop a novel and ultrasensitive method to accurately and rapidly quantify the Pr–SSG by using capillary gel electrophoresis with laser-induced fluorescence detection (CGE-LIF). The derivatization method is based on the specific reduction of protein-bound S-glutathionylation with glutaredoxin (Grx) and labeling with thiol-reactive fluorescent dye (Dylight 488 maleimide). The experiments were performed by coupling the derivatization method with CGE-LIF to study electrophoretic profiling in in vitro oxidative stress model–S-glutathionylated bovine serum albumin (BSA-SSG), oxidant-induced human colon adenocarcinoma (HT-29) cells, brain tissues, and whole blood samples from an AD transgenic (Tg) mouse model. The results showed almost an eightfold increase in S-glutathionyl abundance when subjecting HT-29 cells in an oxidant environment, resulting in Pr–SSG at 232 ± 10.64 (average ±SD; n = 3) nmol/mg. In the AD–Tg mouse model, an initial quantitative measurement demonstrated the extent of protein S-glutathionylation in three brain regions (hippocampus, cerebellum, and cerebrum), ranging from 1 to 10 nmol/mg. Additionally, we described our developed method to potentially serve as a highly desirable diagnostic tool for monitoring S-glutathionylated protein profile in minuscule amount of whole blood. The whole blood samples for S-glutathionyl expression of 5-month-old AD–Tg mice are quantified as 16.3 μmol/L (=7.2 nmol/mg protein). Altogether, this is a fast, easy, and accurate method, reaching the lowest limit of Pr–SSG detection at 1.8 attomole (amol) level, reported to date.  相似文献   
79.
An online citrate and Ca(2+) sensing system based on sequential injection analysis (SIA) is developed as a safety module for hemodialysis. Host 1 displays high affinity towards citrate, and was selected for this study owing to its unique structural features. The o-aminomethylphenylboronic moiety can effectively interact with the α-hydroxycarboxylate moiety of citrate and the remaining two guanidiniums may further stabilize the complex via hydrogen bonds. Fura-2 chelates to Ca(2+) with a high selectivity and affinity and was utilized in this study for Ca(2+) measurements. The citrate sensing chemistry via an indicator displacement assay is orthogonal to the Ca(2+) sensing chemistry, and the use of sophisticated chemometrics is not required for data analysis. The citrate and Ca(2+) concentrations in dialysate samples are measured with the developed SIA system. The obtained citrate concentrations were verified via a commercially available enzymatic assay and an NMR method, respectively, while the Ca(2+) concentrations were verified via atomic absorption.  相似文献   
80.
A general and effective palladium system for Suzuki-Miyaura coupling of alkenyl electrophiles under mild reaction conditions is reported. With the Pd(OAc)(2)/CM-phos system, a variety of alkenyl tosylates are coupled well with ArB(OH)(2). Moreover, the first successful examples of using alkenyl mesylates in alkenylation are also described.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号