首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   14篇
化学   169篇
晶体学   1篇
数学   1篇
物理学   14篇
  2021年   4篇
  2020年   6篇
  2019年   8篇
  2018年   1篇
  2016年   7篇
  2015年   4篇
  2014年   5篇
  2013年   13篇
  2012年   17篇
  2011年   16篇
  2010年   3篇
  2009年   5篇
  2008年   5篇
  2007年   9篇
  2006年   13篇
  2005年   14篇
  2004年   8篇
  2003年   11篇
  2002年   7篇
  2001年   7篇
  2000年   4篇
  1999年   6篇
  1998年   1篇
  1996年   1篇
  1992年   1篇
  1991年   2篇
  1989年   3篇
  1986年   1篇
  1985年   2篇
  1982年   1篇
排序方式: 共有185条查询结果,搜索用时 843 毫秒
41.
Nitrative stress is implicated in various pathogenic processes, including neurodegenerative disorders, but there is no practical fluorescence probe which can monitor the generation of nitrative stress with high selectivity. To design a suitable fluorescence probe, we have first focused on the fluorescence quenching mechanism of the nitro group, which has been believed to be a unique quencher of fluorescent dyes. We found that nitro group-based fluorescence quenching could be explained in terms of an electron transfer process, from the excited fluorophore to the electron-deficient aromatic nitro moiety. By utilizing this result, we succeeded in developing novel fluorogenic probes, NiSPYs, which can selectively monitor the generation of nitrative stress based on aromatic nitration. NiSPYs showed strong fluorescence enhancement upon the reaction with nitrating agents, including peroxynitrite, but showed little or no fluorescence augmentation in the presence of other reactive oxygen species. NiSPYs should be potentially useful as tools to study the role of nitrative stress in various biological applications.  相似文献   
42.
A circularly polarized ultraviolet (UV) laser pulse may excite a unidirectional valence-type electronic ring current in an oriented molecule, within the pulse duration of a few femtoseconds (e.g., tau = 3.5 fs). The mechanism is demonstrated by quantum model simulation for |X = |1(1)A(1g) --> |E(+) = |4 (1)E(u+) population transfer in the model system, Mg-porphyrin. The net ring current generated by the laser pulse (I = 84.5 microA) is at least 100 times stronger than any ring current, which could be induced by means of permanent magnetic fields, with present technology.  相似文献   
43.
Mineno T  Ueno T  Urano Y  Kojima H  Nagano T 《Organic letters》2006,8(26):5963-5966
[Structure: see text] Carboxyfluoresceins are widely utilized as fluorescence labeling reagents, but we recently found that their emission intensity is markedly decreased after esterification. On the basis of our hypothesis that the fluorescence decrease is due to a donor-excited photoinduced electron transfer (d-PeT) process, we have developed novel carboxyfluorescein derivatives in which the d-PeT process is hampered, and the emission intensity is not decreased upon esterification. These novel dye derivatives display high quantum yields and are expected to be useful as labeling agents.  相似文献   
44.
45.
We investigate the dynamics of probability distributions of an initially one-mode coherent field interacting with a four-state molecular system, which is a single magnet with a tunneling across an anisotropic barrier, using a numerically exact approach. The population for each state, the phase properties of and , and ), the entropy are calculated for a model system. The model predicts that the molecule and field become asymptotically disentangled at half of the revival time, and that optical Schrödinger-cat and magnetic Schrödinger-cat states are generated.This paper was originally presented at the 5th International Conference on NEAR FIELD OPTICS and RELATED TECHNOLOGIES (NFO-5), which was held on December 6–10, 1998 at Coganoi Bay Hotel, Shirahama, Japan, in cooperation with the Japan Society of Applied Physics and Mombusho Grant-in Aid for Scientific Research on Priority Areas “Near-field Nano-optics” Project, sponsored by Japan Society for the Promotion of Science.  相似文献   
46.
The development and cellular applications of novel fluorescent probes for Zn2+, ZnAF-1F, and ZnAF-2F are described. Fluorescein is used as a fluorophore of ZnAFs, because its excitation and emission wavelengths are in the visible range, which minimizes cell damage and autofluorescence by excitation light. N,N-Bis(2-pyridylmethyl)ethylenediamine, used as an acceptor for Zn2+, is attached directly to the benzoic acid moiety of fluorescein, resulting in very low quantum yields of 0.004 for ZnAF-1F and 0.006 for ZnAF-2F under physiological conditions (pH 7.4) due to the photoinduced electron-transfer mechanism. Upon the addition of Zn2+, the fluorescence intensity is quickly increased up to 69-fold for ZnAF-1F and 60-fold for ZnAF-2F. Apparent dissociation constants (K(d)) are in the nanomolar range, which affords sufficient sensitivity for biological applications. ZnAFs do not fluoresce in the presence of other biologically important cations such as Ca2+ and Mg2+, and are insensitive to change of pH. The complexes with Zn2+ of previously developed ZnAFs, ZnAF-1, and ZnAF-2 decrease in fluorescence intensity below pH 7.0 owing to protonation of the phenolic hydroxyl group of fluorescein, whose pKa value is 6.2. On the other hand, the Zn2+ complexes of ZnAF-1F and ZnAF-2F emit stable fluorescence around neutral and slightly acidic conditions because the pKa values are shifted to 4.9 by substitution of electron-withdrawing fluorine at the ortho position of the phenolic hydroxyl group. For application to living cells, the diacetyl derivative of ZnAF-2F, ZnAF-2F DA, was synthesized. ZnAF-2F DA can permeate through the cell membrane, and is hydrolyzed by esterase in the cytosol to yield ZnAF-2F, which is retained in the cells. Using ZnAF-2F DA, we could measure the changes of intracellular Zn2+ in cultured cells and hippocampal slices.  相似文献   
47.
Boron dipyrromethene (BODIPY) is known to have a high quantum yield (phi) of fluorescence in aqueous solution but has not been utilized much for biological applications, compared to fluorescein. We developed 8-(3,4-diaminophenyl)-2,6-bis(2-carboxyethyl)-4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene (DAMBO-P(H)), based on the BODIPY chromophore, as a highly sensitive fluorescence probe for nitric oxide (NO). DAMBO-P(H) had a low phi value of 0.002, whereas its triazole derivative (DAMBO-P(H)-T), the product of the reaction of DAMBO-P(H) with NO, fluoresced strongly (phi = 0.74). The change of the fluorescence intensity was found to be controlled by an intramolecular photoinduced electron transfer (PeT) mechanism. The strategy for development of DAMBO-P(H) was as follows: (1) in order to design a highly sensitive probe of NO, the reactivity of o-phenylenediamine derivatives as NO-reactive moieties was examined using 4,5-diaminofluorescein (DAF-2, a widely used NO fluorescence probe), (2) in order to avoid pH-dependency of the fluorescence intensity, the PeT process was controlled by modulating the spectroscopic and electrochemical properties of BODIPY chromophores according to the Rehm-Weller equation based on measurement of excitation energies of chromophores, ground-state reduction potentials of PeT acceptors (BODIPYs), and calculation of the HOMO energy level of the PeT donor (o-phenylenediamine moiety) at the B3LYP/6-31G level, (3) in order to avoid quenching of fluorescence by stacking of the probes and to obtain probes suitable for biological applications, hydrophilic functional groups were introduced. This strategy should be applicable for the rational design of other novel and potentially useful bioimaging fluorescence probes.  相似文献   
48.
A ratiometric measurement, namely, simultaneous recording of the fluorescence intensities at two wavelengths and calculation of their ratio, allows greater precision than measurements at a single wavelength, and is suitable for cellular imaging studies. Here we describe a novel method of designing probes for ratiometric measurement of hydrolytic enzyme activity based on switching of fluorescence resonance energy transfer (FRET). This method employs fluorescent probes with a 3'-O,6'-O-protected fluorescein acceptor linked to a coumarin donor through a linker moiety. As there is no spectral overlap integral between the coumarin emission and fluorescein absorption, the fluorescein moiety cannot accept the excitation energy of the donor moiety and the donor fluorescence can be observed. After cleavage of the protective groups by hydrolytic enzymes, the fluorescein moiety shows a strong absorption in the coumarin emission region, and then acceptor fluorescence due to FRET is observed. Based on this mechanism, we have developed novel ratiometric fluorescent probes (1-3) for protein tyrosine phosphatase (PTP) activity. They exhibit a large shift in their emission wavelength after reaction with PTPs. The fluorescence quenching problem that usually occurs with FRET probes is overcome by using the coumarin-cyclohexane-fluorescein FRET cassette moiety, in which close contact of the two dyes is hindered. After study of their chemical and kinetic properties, we have concluded that compounds 1 and 2 bearing a rigid cyclohexane linker are practically useful for the ratiometric measurement of PTPs activity. The design concept described in this paper, using FRET switching by spectral overlap integral and a rigid link that prevents close contact of the two dyes, should also be applicable to other hydrolytic enzymes by introducing other appropriate enzyme-cleavable groups into the fluorescein acceptor.  相似文献   
49.
Ratiometric measurement is a technique that can provide precise data and even quantitative detection. To carry out ratiometric measurements, it is necessary that the sensor molecule exhibits a large shift in its emission or excitation spectrum after reaction with the target molecule. Fluorescence resonance energy transfer (FRET) is one mechanism used to obtain a large spectral shift. In this study, our aim was to develop a ratiometric fluorescent sensor molecule for phosphodiesterase activity based on FRET. We designed and synthesized CPF4 with a coumarin donor, a fluorescein acceptor, and two phenyl linkers having the phosphodiester moiety interposed between them. In the emission spectrum of CPF4 in aqueous buffer excited at 370 nm, the emission of the coumarin donor was strongly quenched and the emission of the fluorescein acceptor was observed. This emission spectrum demonstrates that energy transfer from the coumarin donor to the fluorescein acceptor proceeds efficiently. Addition of a phosphodiesterase to an aqueous solution of CPF4 resulted in an increase in the donor fluorescence and a decrease in the acceptor fluorescence. CPF4 exhibited a large shift in its emission spectrum after the hydrolysis of the phosphodiester group by the enzyme. This large shift of the emission spectrum indicates that ratiometric measurements can be made by using CPF4. The method described in this paper for designing enzyme-cleavable sensor molecules based on FRET should be readily applicable to other hydrolytic enzymes.  相似文献   
50.
Fluorescence imaging is the most powerful technique currently available for continuous observation of dynamic intracellular processes in living cells. Suitable fluorescence probes are naturally of critical importance for fluorescence imaging, but only a very limited range of biomolecules can currently be visualized because of the lack of flexible design strategies for fluorescence probes. At present, design is largely empirical. Here we show that the carboxylic group of traditional fluorescein dyes, formerly considered indispensable, has been replaced with other substituents, affording various kinds of new fluoresceins. Further, by breaking out of the traditional structure of fluorescein, we developed the first and totally rational design strategy for novel fluorescence probes based on a strict photochemical basis. The value of this approach is exemplified by its application to develop a novel, highly sensitive, and membrane-permeable fluorescence probe for beta-galactosidase, which is the most widely used reporter enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号