首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   343篇
  免费   8篇
  国内免费   1篇
化学   247篇
晶体学   16篇
力学   9篇
数学   47篇
物理学   33篇
  2021年   4篇
  2020年   10篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   6篇
  2014年   6篇
  2013年   12篇
  2012年   16篇
  2011年   26篇
  2010年   14篇
  2009年   15篇
  2008年   22篇
  2007年   30篇
  2006年   19篇
  2005年   18篇
  2004年   13篇
  2003年   13篇
  2002年   14篇
  2001年   14篇
  2000年   12篇
  1999年   8篇
  1998年   6篇
  1997年   4篇
  1996年   14篇
  1995年   9篇
  1994年   3篇
  1992年   5篇
  1991年   1篇
  1990年   1篇
  1989年   4篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   4篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1973年   1篇
  1967年   1篇
排序方式: 共有352条查询结果,搜索用时 31 毫秒
91.
The reaction of [[2,6-(i-Pr)(2)PhN=C(Me)](2)(C(5)H(3)N)]MnCl(2) with alkylating agents formed a dinuclear Mn(I) derivative via ligand reductive coupling. In the case of the trivalent Cr analogue, a similar reaction afforded reduction toward Cr(II) but also alkylation at the pyridine ring para position followed by an unprecedented cycloaddition that generated a tricyclic system.  相似文献   
92.
Three methods have been developed to prepare gallium and indium complexes of three tetradentate N(2)S(2) ligands of the general formula M(N(2)S(2))R (M = Ga, In; R = Cl, Br, SCN, O(2)CC(6)H(5)-O,O'). The ancillary ligand (Cl, SCN, O(2)CC(6)H(5)-O,O') was varied with the tetradentate ligand BAT-TM. X-ray crystallography shows that the coordination geometry about the d(10) metal ion is influenced by the steric requirements of the ligands. X-ray crystallography of four molecules results in the following data: GaCl(BAT-TM) (1), formula = C(10)H(22)ClGaN(2)S(2), space group = Pnma, a = 12.387(4) ?, b = 21.116(6) ?, c = 5.986(2) ?, V = 1565.8(9) ?(3), Z = 4; InCl(BAT-TM) (2), formula = C(10)H(22)ClInN(2)S(2), space group = Pnma, a = 12.968(9) ?, b = 29.29(1) ?, c = 5.866(2) ?, V = 1620(2) ?(3), Z = 4; InNCS(BAT-TM) (3), formula = C(11)H(24)ClInN(3)S(3), space group = Pbca, a = 11.812(3) ?, b = 11.679(3) ?, c = 24.238(9) ?, V = 3449.7 (17) ?(3), Z = 8; In(O,O'-O(2)CC(6)H(5))(BAT-TM) (4), formula = C(19)H(29)O(2)InN(2)S(2), space group = P2(1)/n, a = 10.783(2) ?, b = 18.708(4) ?, c = 12.335(4) ?, V = 2321.7(9) ?(3), Z = 4. Proton NMR studies show that the complexes are stable in solution; in polar solvents such as acetonitrile, for certain molecules, two metal-ligand complexes are observed. Similarly, two metal-ligand complexes are seen in NMR data taken in 80% acetonitrile/20% D(2)O (pD = 4.6) mixture. HPLC studies (acetonitrile/50 mM sodium acetate, pH = 4.6) show that the lipophilicity of the ligand determines the retention time of the complex.  相似文献   
93.
The title compound, [CrZn2(CH3)2Cl4(C4H8O)4], contains a central distorted octa­hedral Cr atom, located at an inversion center, bound to two tetra­hydro­furan ligands and four chloro ligands that bridge to two symmetry‐related tetra­hedral Zn atoms. The coordination around zinc is completed by methyl and tetra­hydro­furan ligands. This structure is compared with a previously reported complex of vanadium, and their differences in metric parameters are explained.  相似文献   
94.
1‐Hydroxymethylindazole and 1‐hydroxymethylbenzotriazole have been studied in solution by 1H, 13C and 15N NMR spectroscopy and the X‐ray structure of the second compound determined. DFT and GIAO calculations have been used to discuss geometries, energies (comparatively with 2‐substituted isomers) and NMR chemical shifts.  相似文献   
95.
Reactions of niobium and tantalum pentachlorides with tert-butylamine (>/=6 equiv) in benzene afford the dimeric imido complexes [NbCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2) (90%) and [TaCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2) (79%). The niobium complex exists as two isomers in solution, while the tantalum complex is composed of three major isomers and at least two minor isomers. Analogous treatments with isopropylamine (>/=7 equiv) give the monomeric complexes NbCl(2)(N(i)Pr)(NH(i)Pr)(NH(2)(i)Pr)(2) (84%) and TaCl(2)(N(i)Pr)(NH(i)Pr)(NH(2)(i)Pr)(2) (84%). The monomeric complexes are unaffected by treatment with excess isopropylamine, while the dimeric complexes are cleaved to the monomers MCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)(2) upon addition of excess tert-butylamine in chloroform solution. Treatment of niobium and tantalum pentachlorides with 2,6-diisopropylaniline affords insoluble precipitates of [NH(3)(2,6-(CH(CH(3))(2))(2)C(6)H(3))](2)[NbCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] (100%) and [NH(3)(2,6-(CH(CH(3))(2))(2)C(6)H(3))](2)[TaCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] (100%), which react with 4-tert-butylpyridine to afford the soluble complexes [4-t-C(4)H(9)C(5)H(4)NH](2)[NbCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] (45%) and [4-t-C(4)H(9)C(5)H(4)NH](2)[TaCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] (44%). Sublimation of [NbCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2), MCl(2)(N(i)Pr)(NH(i)Pr)(NH(2)(i)Pr)(2), and [NH(3)(2,6-(CH(CH(3))(2))(2)C(6)H(3))](2)[MCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] leads to decomposition to give [MCl(3)(NR)(NH(2)R)](2) as sublimates (32-49%), leaving complexes of the proposed formulation MCl(NR)(2) as nonvolatile residues. By contrast, [TaCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2) sublimes without chemical reaction. Analysis of the organic products obtained from thermal decomposition of [NbCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2) showed isobutylene and tert-butylamine in a 2.2:1 ratio. Mass spectra of [NbCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2), [TaCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2), and [NbCl(3)(N(i)Pr)(NH(2)(i)Pr)](2) showed the presence of dimeric imido complexes, monomeric imido complexes, and nitrido complexes, implying that such species are important gas phase species in CVD processes utilizing these molecular precursors. The crystal structures of [4-t-C(4)H(9)C(5)H(4)NH](2)[NbCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))], [NbCl(3)(N(i)Pr)(NH(2)(i)Pr)](2), [NbCl(3)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))(NH(2)(2,6-(CH(CH(3))(2))(2)C(6)H(3)))](2), and [TaCl(3)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))(NH(2)(2,6-(CH(CH(3))(2))(2)C(6)H(3)))](2) were determined. [4-t-C(4)H(9)C(5)H(4)NH](2)[NbCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] crystallizes in the space group P2(1)/c with a = 12.448(3) ?, b = 10.363(3) ?, c = 28.228(3) ?, beta = 94.92(1) degrees, V = 3628(5) ?(3), and Z = 4. [NbCl(3)(N(i)Pr)(NH(2)(i)Pr)](2) crystallizes in the space group P2(1)/c with a = 9.586(4) ?, b = 12.385(4) ?, c = 11.695(4) ?, beta = 112.89(2) degrees, V = 1279.0(6) ?(3), and Z = 2. [NbCl(3)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))(NH(2)(2,6-(CH(CH(3))(2))(2)C(6)H(3)))](2) crystallizes in the space group P2(1)/n with a = 10.285(3) ?, b = 11.208(3) ?, c = 23.867(6) ?, beta = 97.53 degrees, V = 2727(1) ?(3), and Z = 2. [TaCl(3)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))(NH(2)(2,6-(CH(CH(3))(2))(2)C(6)H(3)))](2) crystallizes in the space group P2(1)/n with a = 10.273(1) ?, b = 11.241(2) ?, c = 23.929(7) ?, beta = 97.69(2) degrees, V = 2695(2) ?(3), and Z = 2. These findings are discussed in the context of niobium and tantalum nitride film depositions from molecular precursors.  相似文献   
96.
The chromatographic behaviour of recombinant human tumour necrosis factor beta (rhTNF-β) (pI9.0) during cation-exchange chromatography at pH 7.5 is investigated. Without prior treatment of the Escherichia coli cell extract with polyethyleneimine (PEI), very little rhTNF-β was bound to the column. However, upon addition of 5% PEI (100 μl ml−1) to the cell lysate, rhTNF-β was shown to bind to cation-exchange columns normally. TNF-β was readily precipitated from the clarified cell extract by 20% ammonium sulphate, but only ca. 25% of this precipitate could be re-solubilized for further purification. However, when 5% PEI was included in the solubilization buffer, the balance of the rhTNF-β could be recovered. It is proposed that charge interaction between rhTNF-β and nucleic acids in the cell extract is responsible for both of these anomalous phenomena, and that PEI (a cationic polyelectrolyte) was able to disrupt this interaction by displacing rhTNF-β from the charge complex.  相似文献   
97.
The synthesis and photophysics of two new aminopropenyl naphthalene diimide (SANDI) dyes are reported. A general and convenient method for the synthesis of the precursor mono‐, di‐, and tetrabrominated 1,4,5,8‐naphthalene tetracarboxylic dianhydrides is described. The two core‐substituted SANDIs exhibit many of the photophysical properties required for fluorescence labeling applications including high photostability and high fluorescence quantum yields (>0.5) in the visible region of the spectrum. The emission wavelength is sensitive to the number of substituents on the NDI core, and the fluorescence decay times are in the range of ~8–12 ns for both compounds in the solvents investigated. Preliminary fluorescence emission data from single molecules of the compounds embedded in poly(methyl methacrylate) films are also reported and show that single molecules have very low yields of photobleaching, particularly the di‐substituted system. Furthermore, only a small proportion (<10 %) of the single molecules studied display fluorescence intermittencies or “blinks” in their photon trajectory. The compounds appear to be excellent candidates for applications at the single molecule level, for example, as FRET labels.  相似文献   
98.
The use of hybrid quadrupole ion mobility spectrometry time‐of‐flight mass spectrometry (Q/IMS/TOFMS) in the metabolite profiling of leflunomide (LEF) and acetaminophen (APAP) is presented. The IMS drift times (Td) of the drugs and their metabolites were determined in the IMS/TOFMS experiments and correlated with their exact monoisotopic masses and other in silico generated structural properties, such as connolly molecular area (CMA), connolly solvent‐excluded volume (CSEV), principal moments of inertia along the X, Y and Z Cartesian coordinates (MI‐X, MI‐Y and MI‐Z), inverse mobility and collision cross‐section (CCS). The correlation of Td with these parameters is presented and discussed. IMS/TOF tandem mass spectrometry experiments (MS2 and MS3) were successfully performed on the N‐acetyl‐p‐benzoquinoneimine glutathione (NAPQI‐GSH) adduct derived from the in vitro microsomal metabolism of APAP. As comparison, similar experiments were also performed using hybrid triple quadrupole linear ion trap mass spectrometry (QTRAPMS) and quadrupole time‐of‐flight mass spectrometry (QTOFMS). The abilities to resolve the product ions of the metabolite within the drift tube and fragment the ion mobility resolved product ions in the transfer travelling wave‐enabled stacked ring ion guide (TWIG) demonstrated the potential applicability of the Q/IMS/TOFMS technique in pharmaceutical metabolite profiling. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
99.
The energy loss of hydrogen atoms with energies of 400 eV and 1 keV is studied in coincidence with the number of emitted electrons during grazing scattering from atomically clean and flat KI(001) and LiF(001) surfaces. The energy loss spectra for specific numbers of emitted electrons are analyzed in terms of a binary interaction model based on the formation of transient negative ions via local capture of valence band electrons from anion sites. Based on computer simulations we derive for this interaction scenario probabilities for the production of surface excitons, for electron loss to the conduction band of KI, for emission of electrons, and for formation of negative hydrogen ions. The pronounced differences of data obtained for the two surfaces are attributed to the different electronic structures of KI and LiF.  相似文献   
100.
A compact 14.5GHz electron cyclotron resonance (ECR) ion source for the production of slow, multiply charged ions has been constructed,with the plasma-confining magnetic field produced exclusively by permanent magnets.Microwave power of up to 175W in the frequency range from 12.75 to 14.SGHz is transmitted from ground potential via a PTFE window into the water-cooled plasma chamber which can be equipped with an aluminum liner.The waveguide coupling system serves also as biased electrode,and two remotely-controlled gas inlet valves connected via an insulating break permit plasma operation in the gas- mixing mode.A triode extraction system sustains ion acceleration voltages between 1kV and 10kV.The ECR ion source is fully computer-controlled and can be remotely operated from any desired location via Ethernet.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号