Bone marrow mesenchymal stem cells (MSCs) are one of the potential tools for treatment of the spinal cord injury; however,
the survival and differentiation of MSCs in an injured spinal cord still need to be improved. In the present study, we investigated
whether Governor Vessel electro-acupuncture (EA) could efficiently promote bone marrow mesenchymal stem cells (MSCs) survival and differentiation,
axonal regeneration and finally, functional recovery in the transected spinal cord. 相似文献
As a charged fermion drops into a BTZ black hole, the laws of thermodynamics and the weak cosmic censorship conjecture are investigated in both the normal and extended phase space, where the cosmological parameter and renormalization length are regarded as extensive quantities. In the normal phase space, the first and second law of thermodynamics, and the weak cosmic censorship are found to be valid. In the extended phase space, although the first law and weak cosmic censorship conjecture remain valid, the second law is dependent on the variation of the renormalization energy d K. Moreover, in the extended phase space, the configurations of extremal and near-extremal black holes are not changed, as they are stable, while in the normal phase space, the extremal and near-extremal black holes evolve into non-extremal black holes. 相似文献
The state preparation operation of continuous-variable measurement-device-independent quantum key distribution (CV-MDI-QKD) protocol may become imperfect in practical applications. We address the security of the CV-MDI-QKD protocol based on imperfect preparation of the coherent state under realistic conditions of lossy and noisy quantum channel. Specifically, we assume that the imperfection of Alice's and Bob's practical state preparations equal to the amplification of ideal modulators and lasers at both Alice's and Bob's sides by untrusted third-parties Fred and Gray employing phase-insensitive amplifiers (PIAs), respectively. The equivalent excess noise introduced by the imperfect state preparation is comprehensively and quantitatively calculated by adopting the gains of PIAs. Security analysis shows that CV-MDI-QKD is quite sensitive to the imperfection of practical state preparation, which inevitably deteriorates the performance and security of CV-MDI-QKD system. Moreover, a lower bound of the secret key rate is derived under arbitrary collective attacks, and the upper threshold of this imperfection tolerated by the system is obtained in the form of the specific gains of PIAs. In addition, the methods presented will improve and perfect the practical security of CV-MDI-QKD protocol. 相似文献
Gaussian modulation is one of the key steps for the implementation of continuous-variable quantum key distribution (CVQKD) schemes. However, imperfection in the Gaussian modulation may introduce modulation noise that can deteriorate the performance of CVQKD systems. In this paper, we mainly investigate how to improve the performance of a CVQKD system from different aspects. First, we explore the several different origins, impacts and monitoring schemes for the modulation noise in detail. Then, we discuss the practical performance of a CVQKD system with an untrusted noise model and neutral party model, respectively. These analyses indicate that the neutral party model should be reasonably regarded as a general noise model, which will passively and greatly raise the performance of the system. Further, we propose a dynamic auto-bias control scheme to actively resist the modulation noise which comes from the drift of bias point of the amplitude modulator. Together these methods contribute to the improvement of the practical performance of CVQKD systems with imperfect Gaussian modulation.
Based on the classical Nagel–Schreckenberg model, we in this paper propose an improved cellular automaton (CA) model to study the influences of a multi-point tollbooth on traffic flow. The numerical results show that the multi-point tollbooth can be looked at as a bottleneck and that it can improve the road capacity compared with other tolling stations, which shows that the proposed model is more effective than other traffic flow models. In addition, the results can help readers to better understand the effects of a multi-point tollbooth on traffic flow and help traffic engineers to reasonably design the tolling station. 相似文献
The objective of this paper was to investigate the value of apparent diffusion coefficients (ADCs) for differential diagnosis among solid pancreatic masses using respiratory triggered diffusion-weighted MR imaging with inversion-recovery fat-suppression technique (RT-IR-DWI) at 3.0 T.
Materials and Methods
20 normal volunteers and 72 patients (Pancreatic ductal adenocarcinoma [PDCA, n = 30], mass-forming pancreatitis [MFP, n = 15], solid pseudopapillary neoplasm [SPN, n = 12], and pancreatic neuroendocrine tumor[PNET, n = 15]) underwent RT-IR-DWI (b values: 0 and 600 s/mm2) at 3.0 T. Results were correlated with histopathologic data and follow-up imaging. ADC values among different types of pancreatic tissue were statistically analyzed and compared.
Results
Statistical difference was noticed in ADC values among normal pancreas, MFP, PDCA, SPN and PNET by ANOVA (p < .001). Normal pancreas had the highest ADC value, then followed by PNET, PDCA, MFP and SPN. There was noticeable statistical difference in ADC values among PDCA, MFP and normal pancreas by Least Significant Difference (LSD) (p < .001). ADC of SPN was statistically lower than that of PNET (p = 0.1800 × 10− 4), PDCA (p = 0.0300 × 10− 4) and normal pancreas (p = 0.0007 × 10− 4). ADC of PNET was statistically lower than that of normal pancreas (p = 0.0360) and higher than that of MFP (p = 9.3000 × 10− 4).
Conclusions
ADC measurements using RT-IR-DWI at 3.0 T may aid to disclose the histopathological pattern of normal pancreas and solid pancreatic masses, which may be helpful in characterizing solid pancreatic lesions. 相似文献
A facile approach to the synthesis of pressure and temperature dual‐responsive polystyrene (PS) microbeads with controlled sizes via dispersion polymerization is described. Three different luminophors are selected and directly introduced into the reaction system and thus incorporated into the resultant PS microbeads during polymerization. By manipulating the reaction conditions, including concentrations of the initiator and monomer, polarity of the reaction medium, and injection rate for the monomer, uniform PS microbeads with sizes ranging from 1 to 5 μm are obtained. When a light source centered at 365 nm is used to excite all the luminophors in the PS beads, three distinct and resolvable emission peaks corresponding well with the luminophors are observed. By taking advantage of their sensitive responses to both pressure and temperature, the PS beads can be utilized for quantitative measurements of these two stimulations simultaneously. The PS beads loaded with multiple luminophors have the ability to serve as building blocks for the fabrication of novel sensing and imaging devices and therefore provide a promising strategy for the study of aerodynamics. 相似文献