首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2161篇
  免费   127篇
  国内免费   13篇
化学   1600篇
晶体学   11篇
力学   66篇
数学   327篇
物理学   297篇
  2024年   5篇
  2023年   15篇
  2022年   15篇
  2021年   42篇
  2020年   31篇
  2019年   41篇
  2018年   33篇
  2017年   41篇
  2016年   93篇
  2015年   55篇
  2014年   114篇
  2013年   131篇
  2012年   166篇
  2011年   191篇
  2010年   109篇
  2009年   114篇
  2008年   149篇
  2007年   140篇
  2006年   130篇
  2005年   117篇
  2004年   119篇
  2003年   85篇
  2002年   78篇
  2001年   36篇
  2000年   32篇
  1999年   23篇
  1998年   25篇
  1997年   19篇
  1996年   17篇
  1995年   14篇
  1994年   12篇
  1993年   7篇
  1992年   6篇
  1991年   8篇
  1989年   3篇
  1988年   4篇
  1987年   6篇
  1986年   4篇
  1985年   19篇
  1984年   6篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1979年   6篇
  1977年   5篇
  1976年   3篇
  1975年   3篇
  1971年   2篇
  1958年   2篇
排序方式: 共有2301条查询结果,搜索用时 31 毫秒
101.
Reproducibility among different types of excitation modes is a major bottleneck in the field of tandem mass spectrometry library development in metabolomics. In this study, we specifically evaluated the influence of collision voltage and activation time parameters on tandem mass spectrometry spectra for various excitation modes [collision‐induced dissociation (CID), pulsed Q dissociation (PQD) and higher‐energy collision dissociation (HCD)] of Orbitrap‐based instruments. For this purpose, internal energy deposition was probed using an approach based on Rice–Rampserger–Kassel–Marcus modeling with three thermometer compounds of different degree of freedom (69, 228 and 420) and a thermal model. This model treats consecutively the activation and decomposition steps, and the survival precursor ion populations are characterized by truncated Maxwell–Boltzmann internal energy distributions. This study demonstrates that the activation time has a significant impact on MS/MS spectra using the CID and PQD modes. The proposed model seems suitable to describe the multiple collision regime in the PQD and HCD modes. Linear relationships between mean internal energy and collision voltage are shown for the latter modes and the three thermometer molecules. These results suggest that a calibration based on the collision voltage should provide reproducible for PQD, HCD to be compared with CID in tandem in space instruments. However, an important signal loss is observed in PQD excitation mode whatever the mass of the studied compounds, which may affect not only parent ions but also fragment ions depending on the fragmentation parameters. A calibration approach for the CID mode based on the variation of activation time parameter is more appropriate than one based on collision voltage. In fact, the activation time parameter in CID induces a modification of the collisional regime and thus helps control the orientation of the fragmentation pathways (competitive or consecutive dissociations). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
102.
Mambalgins are a novel class of snake venom components that exert potent analgesic effects mediated through the inhibition of acid‐sensing ion channels (ASICs). The 57‐residue polypeptide mambalgin‐2 (Ma‐2) was synthesized by using a combination of solid‐phase peptide synthesis and native chemical ligation. The structure of the synthetic toxin, determined using homonuclear NMR, revealed an unusual three‐finger toxin fold reminiscent of functionally unrelated snake toxins. Electrophysiological analysis of Ma‐2 on wild‐type and mutant ASIC1a receptors allowed us to identify α‐helix 5, which borders on the functionally critical acidic pocket of the channel, as a major part of the Ma‐2 binding site. This region is also crucial for the interaction of ASIC1a with the spider toxin PcTx1, thus suggesting that the binding sites for these toxins substantially overlap. This work lays the foundation for structure–activity relationship (SAR) studies and further development of this promising analgesic peptide.  相似文献   
103.
104.
The direct introduction of fluorine and fluorinated building blocks has recently attracted a lot of attention and particularly the direct functionalization of alkenes and alkynes. This review will highlight the major progress recently made in that field, with a focus on photocatalyzed transformations, base‐promoted processes, and transition metal‐catalyzed functionalization of alkenes and alkynes. Special attention will be paid to explanations of the reaction mechanisms.  相似文献   
105.
New organosilica precursors containing two triethoxysilyl groups suitable for the organosilica material formation through the sol‐gel process were designed and synthesised. These precursors display alkyne or azide groups for attaching targeted functional groups by copper‐catalysed azide–alkyne cycloaddition (CuAAC) and can be used for the preparation of functional organosilicas following two strategies: 1) the functional group is first appended by CuAAC under anhydrous conditions, then the functional material is prepared by the sol‐gel process; 2) the precursor is first subjected to the sol‐gel process, producing porous, clickable bridged silsesquioxanes or periodic mesoporous organosilicas (PMOs), then the desired functional groups are attached by means of CuAAC. Herein, we show the feasibility of both approaches. A series of bridged bis(triethoxysilane)s with different pending organic moieties was prepared, demonstrating the compatibility of the first approach with many functional groups. In particular, we demonstrate that organic functional molecules bearing only one derivatisation site can be used to produce bridged organosilanes and bridged silsesquioxanes. In the second approach, clickable PMOs and porous bridged silsesquioxanes were prepared from the alkyne‐ or azide‐containing precursors, and thereafter, functionalised with complementary model azide‐ or alkyne‐containing molecules. These results confirmed the potential of this approach as a general methodology for preparing functional organosilicas with high loadings of functional groups. Both approaches give rise to a wide range of new functional organosilica materials.  相似文献   
106.
Extremely slow and extremely fast new water oxidation catalysts based on the Ru–bda (bda=2,2′‐bipyridine‐6,6′‐dicarboxylate) systems are reported with turnover frequencies in the range of 1 and 900 cycles s?1, respectively. Detailed analyses of the main factors involved in the water oxidation reaction have been carried out and are based on a combination of reactivity tests, electrochemical experiments, and DFT calculations. These analyses give a convergent interpretation that generates a solid understanding of the main factors involved in the water oxidation reaction, which in turn allows the design of catalysts with very low energy barriers in all the steps involved in the water oxidation catalytic cycle. We show that for this type of system π‐stacking interactions are the key factors that influence reactivity and by adequately controlling them we can generate exceptionally fast water oxidation catalysts.  相似文献   
107.
Molecular plasticity controls enzymatic activity: the native fold of a protein in a given environment is normally unique and at a global free‐energy minimum. Some proteins, however, spontaneously undergo substantial fold switching to reversibly transit between defined conformers, the “metamorphic” proteins. Here, we present a minimal metamorphic, selective, and specific caseinolytic metallopeptidase, selecase, which reversibly transits between several different states of defined three‐dimensional structure, which are associated with loss of enzymatic activity due to autoinhibition. The latter is triggered by sequestering the competent conformation in incompetent but structured dimers, tetramers, and octamers. This system, which is compatible with a discrete multifunnel energy landscape, affords a switch that provides a reversible mechanism of control of catalytic activity unique in nature.  相似文献   
108.
The combination of the copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction with sol–gel processing enables the versatile preparation of sol–gel materials under different shapes with targeted functionalities through a diversity-oriented approach. In this account, the development of the CuAAC reaction under anhydrous conditions for the synthesis of sol–gel precursors and for the assembling of magnetic nanoparticles on self-assembled monolayers is related, as well as the use of the classical CuAAC methodologies for the functionalization of mesoporous silica nanoparticles and microdots arrays. Coupling CuAAC and Sol–Gel will result in simplified preparations of multifunctional materials with controlled morphologies.  相似文献   
109.
Twelve naphthochromenone photocatalysts (PCs) were synthesized on gram scale. They absorb across the UV/Vis range and feature an extremely wide redox window (up to 3.22 eV) that is accessible using simple visible light irradiation sources (CFL or LED). Their excited‐state redox potentials, PC*/PC.? (up to 1.65 V) and PC.+/PC* (up to ?1.77 V vs. SCE), are such that these novel PCs can engage in both oxidative and reductive quenching mechanisms with strong thermodynamic requirements. The potential of these bimodal PCs was benchmarked in synthetically relevant photocatalytic processes with extreme thermodynamic requirements. Their ability to efficiently catalyze mechanistically opposite oxidative/reductive photoreactions is a unique feature of these organic photocatalysts, thus representing a decisive advance towards generality, sustainability, and cost efficiency in photocatalysis.  相似文献   
110.
Abstract

We have developed original one-pot and protecting group-free approaches, which are also user-friendly and reliable, to synthesize nucleotides and derivatives starting from nucleoside 5’-monophosphates. Both methods present convenient set-up, i.e., non-dry solvents and reagents, substrates in their sodium or acid form, and commercially available and cheap phosphorus reagents as sodium and potassium salts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号