首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2874篇
  免费   449篇
  国内免费   448篇
化学   2383篇
晶体学   59篇
力学   127篇
综合类   35篇
数学   273篇
物理学   894篇
  2024年   11篇
  2023年   97篇
  2022年   146篇
  2021年   161篇
  2020年   222篇
  2019年   196篇
  2018年   153篇
  2017年   132篇
  2016年   191篇
  2015年   212篇
  2014年   208篇
  2013年   235篇
  2012年   252篇
  2011年   240篇
  2010年   210篇
  2009年   179篇
  2008年   169篇
  2007年   138篇
  2006年   110篇
  2005年   82篇
  2004年   65篇
  2003年   60篇
  2002年   56篇
  2001年   53篇
  2000年   27篇
  1999年   21篇
  1998年   16篇
  1997年   15篇
  1996年   17篇
  1995年   7篇
  1994年   12篇
  1993年   17篇
  1992年   8篇
  1991年   12篇
  1990年   10篇
  1989年   6篇
  1988年   4篇
  1987年   3篇
  1986年   5篇
  1985年   3篇
  1984年   2篇
  1983年   5篇
  1981年   1篇
  1976年   1篇
  1971年   1篇
排序方式: 共有3771条查询结果,搜索用时 187 毫秒
71.
The steady diffusioosmotic flow of an electrolyte solution along a dielectric plane wall caused by an imposed tangential concentration gradient is analytically examined. The plane wall may have either a constant surface potential or a constant surface charge density of an arbitrary quantity. The electric double layer adjacent to the charged wall may have an arbitrary thickness, and its electrostatic potential distribution is determined by the Poisson-Boltzmann equation. The macroscopic electric field along the tangential direction induced by the imposed electrolyte concentration gradient is obtained as a function of the lateral position. A closed-form formula for the fluid velocity profile is derived as the solution of a modified Navier-Stokes equation. The direction of the diffusioosmotic flow relative to the concentration gradient is determined by the combination of the zeta potential of the wall and the properties of the electrolyte solution. For a given concentration gradient of an electrolyte along a plane wall, the magnitude of fluid velocity at a position in general increases with an increase in its electrokinetic distance from the wall, but there are exceptions. The effect of the lateral distribution of the induced tangential electric field in the double layer on the diffusioosmotic flow is found to be very significant and cannot be ignored.  相似文献   
72.
The sedimentation of a homogeneous distribution of spherical composite particles and the fluid flow through a bed of these particles are investigated theoretically. Each composite particle is composed of a spherical solid core and a surrounding porous shell. In the fluid-permeable porous shell, idealized hydrodynamic frictional segments are assumed to distribute uniformly. The effect of interactions among the particles is taken into explicit account by employing a fundamental cell-model representation which is known to provide good predictions for the motion of a swarm of nonporous spheres within a fluid. In the limit of a small Reynolds number, the Stokes and Brinkman equations are solved for the flow field in a unit cell, and the drag force exerted by the fluid on the particle is obtained in a closed form. For a distribution of composite spheres, the normalized mobility of the particles decreases or the particle interactions increase monotonically with a decrease in the permeability of their porous shells. The effect of particle interactions on the creeping motion of composite spheres relative to a fluid can be quite significant in some situations. In the limiting cases, the analytical solutions describing the drag force or mobility for a suspension of composite spheres reduce to those for suspensions of solid spheres and of porous spheres. The hydrodynamic behavior for composite spheres may be approximated by that for permeable spheres when the porous layer is sufficiently thick, depending on the permeability.  相似文献   
73.
74.
The title compound, hexadecacarbonylbis{μ3‐[(diphenylphosphanyl)methanediidyl]sulfanido}‐μ4‐disulfido(2−)‐hexairon(4 FeFe), [Fe6(C13H10PS)2(S2)(CO)16], contains two inversion‐related [Fe3(Ph2PCS)(CO)8] subclusters linked by an equatorial disulfide bond [S—S = 2.1490 (9) Å]. Each Ph2PCS3− ligand is coordinated to a triiron core in a μ3‐κP2C2S fashion.  相似文献   
75.
A series of side-chain liquid crystal (LC) polysiloxanes were synthesised with Poly(methylhydrogeno)siloxane, 4?-(undec-10-enoyloxy) biphenyl – 4 – yl 4- (trifluoromethyl) benzoate (Mth) and a chiral nematic (N*) LC monomer 1-allyl 10-(cholesteryl)-decanedioate (Mch). The chemical structures and LC properties of the monomers and polymers were characterised by FTIR, 1H-NMR, differential scanning calorimetry, thermogravimetric analysis, POM and X-ray diffractometer. Mch is monotropic N* LC. The homopolymer derived from monomer Mch is enantiotropic N* LC. Monomer Mth is a smectic A liquid crystal. The copolymers derived from Mch and Mth are N* LCs. The temperatures at which 5% weight loss occurred are greater than 300°C for all the fluoro-containing polymers, and the residue weights of the samples at 600°C increased slightly as the content of trifluoromethyl mesogens increased in the polymers. The glass transition temperatures of the polymers increased as trifluoromethyl mesogens increased, too. The N*–I phase transition temperatures show a negative deviate from ideal or linear behaviour. The values of the enthalpy changes for the cholesteryl containing polymers are rather low and this is attributed to the biaxiality of cholesteryl moiety which tends to reduce the change in the orientational order at the N*–I transition. Compared to the monomers, the polymers show wider mesophase region.  相似文献   
76.
A simple and sensitive analytical method based on ultraperformance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) has been developed for determination of moclobemide in human brain cell monolayer as an in vitro model of blood–brain barrier. Brucine was employed as the internal standard. Moclobemide and internal standard were extracted from cell supernatant by ethyl acetate after alkalinizing with sodium hydroxide. The UPLC separation was performed on an Acquity UPLCTM BEH C18 column (50 × 2.1 mm, 1.7 µm, Waters, USA) with a mobile phase consisting of methanol–water (29.5:70.5, v/v); the water in the mobile phase contained 0.05% ammonium acetate and 0.1% formic acid. Detection of the analytes was achieved using positive ion electrospray via multiple reaction monitoring mode. The mass transitions were m/z 269.16 → 182.01 for moclobemide and m/z 395.24 → 324.15 for brucine. The extraction recovery was 83.0–83.4% and the lower limit of quantitation (LLOQ) was 1.0 ng/mL for moclobemide. The method was validated from LLOQ to 1980 ng/mL with a coefficient of determination greater than 0.999. Intra‐ and inter‐day accuracies of the method at three concentrations ranged from 89.1 to 100.9% for moclobemide with precision of 1.1–9.6%. This validated method was successfully applied to bidirectional transport study of moclobemide blood–brain barrier permeability. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
77.
A new one-step synthesis of 3-hydroxymethylbenzofuran, based on intramolecular cyclization of 2- (methoxymethyl)-2-(2'-methoxymethyl-4'-methylphenyl)-butanone I under diluted hydrochloric acid in THF, was developed. The mechanism for this process was investigated via chemical equilibrium shift of tautomer in acidic conditions. The applicability of this new method was studied further in this paper.  相似文献   
78.
79.
80.
In this work, living radical polymerizations of a water‐soluble monomer poly(ethylene glycol) monomethyl ether methacylate (PEGMA) in bulk with low‐toxic iron catalyst system, including iron chloride hexahydrate and triphenylphosphine, were carried out successfully. Effect of reaction temperature and catalyst concentration on the polymerization of PEGMA was investigated. The polymerization kinetics showed the features of “living”/controlled radical polymerization. For example, Mn,GPC values of the resultant polymers increased linearly with monomer conversion. A faster polymerization of PEGMA could be obtained in the presence of a reducing agent Fe(0) wire or ascorbic acid. In the case of Fe(0) wire as the reducing agent, a monomer conversion of 80% was obtained in 80 min of reaction time at 90 °C, yielding a water‐soluble poly(PEGMA) with Mn = 65,500 g mol?1 and Mw/Mn = 1.39. The features of “living”/controlled radical polymerization of PEGMA were verified by analysis of chain‐end and chain‐extension experiments. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号