首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   327篇
  免费   15篇
  国内免费   7篇
化学   212篇
晶体学   5篇
力学   10篇
数学   27篇
物理学   95篇
  2024年   3篇
  2023年   6篇
  2022年   17篇
  2021年   29篇
  2020年   21篇
  2019年   26篇
  2018年   24篇
  2017年   13篇
  2016年   28篇
  2015年   11篇
  2014年   14篇
  2013年   25篇
  2012年   25篇
  2011年   18篇
  2010年   15篇
  2009年   13篇
  2008年   3篇
  2007年   6篇
  2006年   11篇
  2005年   10篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1987年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有349条查询结果,搜索用时 218 毫秒
51.
The fabrication of nanoparticles has been perused as a topic of critical importance in the present decades. Biosynthesis of nanoparticles employs plants extract instead of harmful chemicals. These plant extracts act as reducing and capping agents which is the most appropriate and eco-friendly method among all the preparative routs. In present study, the magnetite nanoparticles (Fe3O4-NPs) were fabricated using rapid, single step and benign biosynthetic rout by reduction of ferric nitrate nonahydrate solution with Ferocactus echidne aqueous extract containing ascorbic acid as a main reducing and capping agent. The structural and morphological properties of prepared iron oxide nanoparticles were investigated by Powder X-ray diffraction and scanning electron microscopy. The size of the synthesized nanoparticles was approximately 15 ± 2 nm as determined by Scherrer equation. The biosynthetically fabricated nanoparticles were employed as catalyst for pyrolysis of nutshells to produce biofuel. Catalytic pyrolysis of biomass yields biofuel as an alternative source of energy and chemical feed stock. Effect of temperature, heating rate, and amount of catalyst were investigated on conversion percentage and product yields. Aniline point, carbon residue, and cetane number of prepared bio-oil were also determined.  相似文献   
52.
Meat is a rich source of energy that provides high-value animal protein, fats, vitamins, minerals and trace amounts of carbohydrates. Globally, different types of meats are consumed to fulfill nutritional requirements. However, the increasing burden on the livestock industry has triggered the mixing of high-price meat species with low-quality/-price meat. This work aimed to differentiate different meat samples on the basis of metabolites. The metabolic difference between various meat samples was investigated through Nuclear Magnetic Resonance spectroscopy coupled with multivariate data analysis approaches like principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA). In total, 37 metabolites were identified in the gluteal muscle tissues of cow, goat, donkey and chicken using 1H-NMR spectroscopy. PCA was found unable to completely differentiate between meat types, whereas OPLS-DA showed an apparent separation and successfully differentiated samples from all four types of meat. Lactate, creatine, choline, acetate, leucine, isoleucine, valine, formate, carnitine, glutamate, 3-hydroxybutyrate and α-mannose were found as the major discriminating metabolites between white (chicken) and red meat (chevon, beef and donkey). However, inosine, lactate, uracil, carnosine, format, pyruvate, carnitine, creatine and acetate were found responsible for differentiating chevon, beef and donkey meat. The relative quantification of differentiating metabolites was performed using one-way ANOVA and Tukey test. Our results showed that NMR-based metabolomics is a powerful tool for the identification of novel signatures (potential biomarkers) to characterize meats from different sources and could potentially be used for quality control purposes in order to differentiate different meat types.  相似文献   
53.
The title compounds 3-(3,5-bis(trifluoromethyl)phenyl)quinoline(1) and 3-(4-fluoro-3-methylphenyl)quinoline(2) were synthesized through Suzuki-Miyaura Cross coupling reaction of 3-bromoquinoloine with aryl boronic acids.The title compounds were characterized by single-crystal X-ray diffraction,1H NMR,13C NMR,EI-MS,elemental analysis and IR.The crystals of 3-(3,5-bis(trifluoromethyl)phenyl)quinoline(C17H9F6N,Mr = 341.25) belongs to the monoclinic system,space group P21n,a = 12.3072(13),b = 4.9378(6),c = 24.493(2) ,V = 1473.1(3) 3,Z = 4,Dc = 1.539 Mg m-3,λ = 0.71073 ,μ = 0.144 mm-1,F(000) = 688,the final R = 0.0715 and wR = 0.1873 for 1875 observed reflections with I 2σ(I) and the crystal of 3-(4-fluoro-3-methylphenyl)quinoline(C16H12FN,Mr = 237.27) belongs to the orthorhombic system,space group Pca21,a = 23.794(2),b = 3.9094(3),c = 25.669(2) ,V = 2387.7(4) 3,Z = 8,Dc = 1.320 Mg m-3,λ = 0.71073 ,μ = 0.088 mm-1,F(000) = 992,the final R = 0.0534 and wR = 0.1188 for 2270 observed reflections with I 2σ(I).  相似文献   
54.
This study reports the synthesis of sulfonamide-derived Schiff bases as ligands L 1 and L 2 as well as their transition metal complexes [VO(IV), Fe(II), Co(II), Ni(II), Cu(II), and Zn(II)]. The Schiff bases (4-{E-[(2-hydroxy-3-methoxyphenyl)methylidene]amino}benzene-1-sulfonamide ( L 1 ) and 4-{[(2-hydroxy-3-methoxyphenyl)methylidene]amino}-N-(5-methyl-1,2-oxazol-3-yl)benzene-1-sulfonamide ( L 2 ) were synthesized by the condensation reaction of 4-aminobenzene-1-sulfonamide and 4-amino-N-(3-methyl-2,3-dihydro-1,2-oxazol-5-yl)benzene-1-sulfonamide with 2-hydroxy-3-methoxybenzaldehyde in an equimolar ratio. Sulfonamide core ligands behaved as bidentate ligands and coordinated with transition metals via nitrogen of azomethine and the oxygen of the hydroxyl group. Ligand L 1 was recovered in its crystalline form and was analyzed by single-crystal X-ray diffraction technique which held monoclinic crystal system with space group (P21/c). The structures of the ligands L 1 and L 2 and their transition metal complexes were established by their physical (melting point, color, yields, solubility, magnetic susceptibility, and conductance measurements), spectral (UV–visible [UV–Vis], Fourier transform infrared spectroscopy, 1H NMR, 13C NMR, and mass analysis), and analytical (CHN analysis) techniques. Furthermore, computational analysis (vibrational bands, frontier molecular orbitals (FMOs), and natural bonding orbitals [NBOs]) were performed for ligands through density functional theory utilizing B3LYP/6-311+G(d,p) level and UV–Vis analysis was carried out by time-dependent density functional theory. Theoretical spectroscopic data were in line with the experimental spectroscopic data. NBO analysis confirmed the extraordinary stability of the ligands in their conjugative interactions. Global reactivity parameters computed from the FMO energies indicated the ligands were bioactive by nature. These procedures ensured the charge transfer phenomenon for the ligands and reasonable relevance was established with experimental results. The synthesized compounds were screened for antimicrobial activities against bacterial (Streptococcus aureus, Bacillus subtilis, Eshcheria coli, and Klebsiella pneomoniae) species and fungal (Aspergillus niger and Aspergillus flavous) strains. A further assay was designed for screening of their antioxidant activities (2,2-diphenyl-1-picrylhydrazine radical scavenging activity, total phenolic contents, and total iron reducing power) and enzyme inhibition properties (amylase, protease, acetylcholinesterase, and butyrylcholinesterase). The substantial results of these activities proved the ligands and their transition metal complexes to be bioactive in their nature.  相似文献   
55.
Nonlinear Dynamics - In recent years, substantial work has been done for developing image encryption algorithms. Image encryption requires handling of large data, which needs computationally...  相似文献   
56.
From leaves of Rhus alata, one new benzofuranic acid named [(2E)-3-(4-hydroxy-5,7-dimethyl- benzo[3,4-b] furan-6-yloxy)-prop-2-enoic acid has been isolated together with eight known compounds: dimethyl ester of terephthalic acid, beta-amyrin, friedelin, lupeol, beta-sitosterol, oleanolic acid, taraxerone and ethyl gallate. Structural elucidations were done on the basis of chemical and physical data (IR, UV, 1H-NMR, 13C-NMR and MS spectra).  相似文献   
57.
A novel and simple flow injection chemiluminescence method is reported for the determination of simetryn, a common herbicide. The method is based on the direct oxidation of luminol by the photoproducts of the simetryn in alkaline medium in the absence of catalyst/oxidant. The linear concentration range was 0.01 - 2 microg mL(-1) simetryn with a correlation coefficient (r(2)) of 0.9997 and relative standard deviations (RSD; n = 4) in the range of 0.9 - 2.3%. The limit of detection (S/N = 3) was 7.5 ng mL(-1) with a sample throughput of 100 h(-1). The proposed method has been applied to determine simetryn in natural waters using Sep-Pak C(18) cartridges for solid phase extraction (SPE) procedure. The recoveries were in the range of 97 +/- 1 to 104 +/- 2%. The mechanism of chemiluminescence reaction has also been discussed briefly.  相似文献   
58.
Computing the holographic entanglement entropy proposed by Ryu-Takayanagi shows that thermal energy near boundary region in AdS3 gain maximum of the temperature. The absolute maxima of temperature is \(T^{Max}_{E}= \frac {4G_{3} \epsilon _{\infty }}{l}\). By simple physical investigations it has become possible to predict a phase transition of first order at critical temperature TcTE. As they predict a tail or root towards which the AdS space ultimately tend, the boundary is considered thermalized. The Phase transitions of this form have received striking theoretical and experimental verifications so far.  相似文献   
59.
Ciprofloxacin is a broad-spectrum antibiotic that plays an important role in inhibiting the growth of both Gram-positive and Gram-negative bacteria. Medicinal chemists are extensively involved in the synthesis of novel ciprofloxacin derivatives, in search of new ciprofloxacin-based drugs with enhanced activity. This review article summarizes the major synthetic approaches involved in the synthesis of ciprofloxacin-based molecules.  相似文献   
60.
An efficient, three‐component strategy for synthesis of 1,3‐thiazines with high atom economy in one‐pot mediated by room temperature basic ionic liquid is described here. The strategy involves basic ionic liquid, [bmim]OH‐catalyzed Knoevenagel condensation between ethyl cyanoacetate and aromatic aldehyde and subsequent thia‐Michael addition with substituted thioureas. The reaction sequence is smooth and quantitative under ambient temperature. [bmim]OH was recovered and reused four times without any appreciable decrease in its reactivity and product yield.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号