首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1130篇
  免费   53篇
  国内免费   5篇
化学   842篇
晶体学   5篇
力学   14篇
数学   157篇
物理学   170篇
  2023年   8篇
  2022年   12篇
  2021年   42篇
  2020年   32篇
  2019年   33篇
  2018年   31篇
  2017年   29篇
  2016年   39篇
  2015年   38篇
  2014年   42篇
  2013年   70篇
  2012年   73篇
  2011年   82篇
  2010年   48篇
  2009年   44篇
  2008年   60篇
  2007年   54篇
  2006年   57篇
  2005年   53篇
  2004年   46篇
  2003年   28篇
  2002年   26篇
  2001年   15篇
  2000年   17篇
  1999年   9篇
  1997年   7篇
  1996年   19篇
  1995年   6篇
  1994年   7篇
  1992年   8篇
  1991年   4篇
  1990年   6篇
  1989年   4篇
  1988年   4篇
  1987年   5篇
  1986年   6篇
  1985年   8篇
  1984年   5篇
  1982年   6篇
  1981年   4篇
  1979年   4篇
  1978年   6篇
  1977年   5篇
  1976年   5篇
  1969年   4篇
  1961年   5篇
  1934年   3篇
  1932年   3篇
  1912年   3篇
  1906年   3篇
排序方式: 共有1188条查询结果,搜索用时 15 毫秒
991.
FT–IR spectroscopy and single‐crystal X‐ray structure analysis were used to characterize the discrete neutral compound diaquadioxidobis(n‐valerato‐κ2O,O′)uranium(VI), [UO2(C4H9COO)2(H2O)2], (I), and the ionic compound potassium dioxidotris(n‐valerato‐κ2O,O′)uranium(VI), K[UO2(C4H9COO)3], (II). The UVI cation in neutral (I) is at a site of 2/m symmetry. Potassium salt (II) has two U centres and two K+ cations residing on twofold axes, while a third independent formula unit is on a general position. The ligands in both compounds were found to suffer severe disorder. The FT–IR spectroscopic results agree with the X‐ray data. The composition and structure of the ionic potassium uranyl valerate are similar to those of previously reported potassium uranyl complexes with acetate, propionate and butyrate ligands. Progressive lengthening of the alkyl groups in these otherwise similar compounds was found to have an impact on their structures, including on the number of independent U and K+ sites, on the coordination modes of some of the K+ centres and on the minimum distances between U atoms. The evolution of the KUO6 frameworks in the four homologous compounds is analysed in detail, revealing a new example of three‐dimensional topological isomerism in coordination compounds of UVI.  相似文献   
992.
A series of strong polycations is synthesized through the anionic polymerization of 2‐vinylpyridine, followed by subsequent quaternization of the resulting polymer. Polycations based on quaternized 2‐vinylpyridine (PVPQs) with degrees of polymerization (DP) from 20 to 440 are adsorbed on the surface of small anionic liposomes. Liposome/PVPQ complexes are characterized by using a number of physicochemical methods. All PVPQs are totally adsorbed onto the liposome surface up to a certain concentration at which saturation is reached (which is specific for each PVPQ). The integrity of the adsorbed liposomes remains intact. Short PVPQs interact with anionic lipids localized on the outer membrane leaflet, whereas long PVPQs extract anionic lipids from the inner to outer leaflet. Complexes tend to aggregate, and the largest aggregates are formed when the initial charge of the liposomes is fully neutralized by the charge of the PVPQ. PVPQs with intermediate DPs demonstrate behavioral features of both short and long PVPQs. These results are important for the interpretation of the biological effects of cationic polymers and the selection of cationic polymers for biomedical applications.  相似文献   
993.
The paraelectric–ferroelectric phase transition in two isostructural metal–organic frameworks (MOFs) [NH4][M(HCOO)3] (M=Mg, Zn) was investigated by in situ variable‐temperature 25Mg, 67Zn, 14N, and 13C solid‐state NMR (SSNMR) spectroscopy. With decreasing temperature, a disorder–order transition of NH4+ cations causes a change in dielectric properties. It is thought that [NH4][Mg(HCOO)3] exhibits a higher transition temperature than [NH4][Zn(HCOO)3] due to stronger hydrogen‐bonding interactions between NH4+ ions and framework oxygen atoms. 25Mg and 67Zn NMR parameters are very sensitive to temperature‐induced changes in structure, dynamics, and dielectric behavior; stark spectral differences across the paraelectric–ferroelectric phase transition are intimately related to subtle changes in the local environment of the metal center. Although 25Mg and 67Zn are challenging nuclei for SSNMR experiments, the highly spherically symmetric metal‐atom environments in [NH4][M(HCOO)3] give rise to relatively narrow spectra that can be acquired in 30–60 min at a low magnetic field of 9.4 T. Complementary 14N and 13C SSNMR experiments were performed to probe the role of NH4+–framework hydrogen bonding in the paraelectric–ferroelectric phase transition. This multinuclear SSNMR approach yields new physical insights into the [NH4][M(HCOO)3] system and shows great potential for molecular‐level studies on electric phenomena in a wide variety of MOFs.  相似文献   
994.
The kinetics and mechanism of the nucleophilic vinylic substitution of dialkyl (alkoxymethylidene)malonates (alkyl: methyl, ethyl) and (ethoxymethylidene)malononitrile with substituted hydrazines and anilines R1–NH2 (R1: (CH3)2N, CH3NH, NH2, C6H5NH, CH3CONH, 4‐CH3C6H4SO2NH, 3‐ and 4‐X‐C6H4; X: H, 4‐Br, 4‐CH3, 4‐CH3O, 3‐Cl) were studied at 25 °C in methanol. It was found that the reactions with all hydrazines (the only exception was the reaction of (ethoxymethylidene)malononitrile with N,N‐dimethylhydrazine) showed overall second‐order kinetics and kobs were linearly dependent on the hydrazine concentration which is consistent with the rate‐limiting attack of the hydrazine on the double bond of the substrate. Corresponding Brønsted plots are linear (without deviating N‐methyl and N,N‐dimethylhydrazine), and their slopes (βNuc) gradually increase from 0.59 to 0.71 which reflects gradually increasing order of the C–N bond formed in the transition state. The deviation of both methylated hydrazines is probably caused by the different site of nucleophilicity/basicity in these compounds (tertiary/secondary vs. primary nitrogen). A somewhat different situation was observed with the anilines (and once with N,N‐dimethylhydrazine) where parabolic dependences of the kinetics gradually changing to linear dependences as the concentration of nucleophile/base increases. The second‐order term in the nucleophile indicates the presence of a steady‐state intermediate ‐ most probably T±. Brønsted and Hammett plots gave βNuc = 1.08 and ρ = ?3.7 which is consistent with a late transition state whose structure resembles T±. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
995.
Many scholars express concerns that herding behaviour causes excess volatility, destabilises financial markets, and increases the likelihood of systemic risk. We use a special form of the Strongly Typed Genetic Programming (STGP) technique to evolve a stock market divided into two groups—a small subset of artificial agents called ‘Best Agents’ and a main cohort of agents named ‘All Agents’. The ‘Best Agents’ perform best in term of the trailing return of a wealth moving average. We then investigate whether herding behaviour can arise when agents trade Dow Jones, General Electric, and IBM financial instruments in four different artificial stock markets. This paper uses real historical quotes of the three financial instruments to analyse the behavioural foundations of stylised facts such as leptokurtosis, non-IIDness, and volatility clustering. We found evidence of more herding in a group of stocks than in individual stocks, but the magnitude of herding does not contribute to the mispricing of assets in the long run. Our findings suggest that the price formation process caused by the collective behaviour of the entire market exhibit less herding and is more efficient than the segmented market populated by a small subset of agents. Hence, greater genetic diversity leads to greater consistency with fundamental values and market efficiency.  相似文献   
996.
997.
998.
999.
1000.
Let (X i d i ), i=1,2, be proper geodesic hyperbolic metric spaces. We give a general construction for a 'hyperbolic product' X 1× h X 2 which is itself a proper geodesic hyperbolic metric space and examine its boundary at infinity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号