首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6031篇
  免费   210篇
  国内免费   10篇
化学   4362篇
晶体学   50篇
力学   126篇
数学   544篇
物理学   1169篇
  2023年   54篇
  2022年   66篇
  2021年   218篇
  2020年   166篇
  2019年   172篇
  2018年   151篇
  2017年   100篇
  2016年   241篇
  2015年   219篇
  2014年   263篇
  2013年   379篇
  2012年   452篇
  2011年   495篇
  2010年   311篇
  2009年   312篇
  2008年   402篇
  2007年   335篇
  2006年   312篇
  2005年   243篇
  2004年   211篇
  2003年   152篇
  2002年   123篇
  2001年   98篇
  2000年   88篇
  1999年   58篇
  1998年   51篇
  1997年   49篇
  1996年   40篇
  1995年   41篇
  1994年   43篇
  1993年   45篇
  1992年   46篇
  1991年   25篇
  1990年   28篇
  1989年   18篇
  1988年   21篇
  1987年   15篇
  1986年   13篇
  1985年   16篇
  1984年   19篇
  1983年   19篇
  1982年   11篇
  1981年   22篇
  1980年   11篇
  1979年   12篇
  1978年   16篇
  1977年   9篇
  1976年   9篇
  1975年   9篇
  1973年   8篇
排序方式: 共有6251条查询结果,搜索用时 31 毫秒
981.
A Diltiazem kinetic spectrophotometric method was optimized by factorial analysis. The experimental method is based on a two-stage reaction of Diltiazem with hydroxylamine and a ferric salt: in the first stage there is a hydroxamic acid formation; and, in the second stage there is a red colour complex ferric hydroxamate formation. The variables under investigation were: solvent; hydroxylamine, sodium hydroxide and ammonium ferric sulphate concentrations; volume of perchloric acid; and, temperature. The responses of the reactional system were the maximum absorbance, the wavelength and the reaction time at maximum absorbance. Experimental design methodologies were used in the optimization. Fractional and full factorial designs followed by optimization Box-Behnken and central composite experimental designs were used. The observed optimum conditions were: methanol as reaction solvent; hydroxylamine concentration of 9.375%; sodium hydroxide concentration of 18.750%; ferric reagent concentration of 2.000%; minimum volume of perchloric acid to neutralize the sodium hydroxide; and, room temperature as reaction temperature. With this set of experimental conditions a reaction time of 10.5 s with maximum colour development at 512 nm wavelength was achieved.  相似文献   
982.
Erbium L(3)-edge extended x-ray absorption fine structure (EXAFS) measurements were performed on rare earth doped fluorosilicate and fluoroborate glasses and glass ceramics. The well known nucleating effects of erbium ions for the crystallization of cubic lead fluoride (based on x-ray diffraction measurements) and the fact that the rare earth ions are present in the crystalline phase (as indicated by Er(3+) emission spectra) seem in contradiction with the present EXAFS analysis, which indicates a lack of medium range structural ordering around the Er(3+) ions and suggests that the lead fluoride crystallization does not occur in the nearest neighbor distance of the rare earth ion. Molecular dynamics simulations of the devitrification process of a lead fluoride glass doped with Er(3+) ions were performed, and results indicate that Er(3+) ions lower the devitrification temperature of PbF(2), in good agreement with the experimental results. The genuine role of Er(3+) ions in the devitrification process of PbF(2) has been investigated. Although Er(3+) ions could indeed act as seeds for crystallization, as experiments suggest, molecular dynamics simulation results corroborate the experimental EXAFS observation that the devitrification does not occur at its nearest neighbor distance.  相似文献   
983.
The temperature dependence of the photoluminescence properties of a thin film of poly[2-methoxy-5-(2(')-ethylhexyloxy)-p-phenylene-vinylene], MEH-PPV, fabricated by spin coating, is analyzed. The evolution with temperature of the peak energy of the purely electronic transition, of the first vibronic band, of the effective conjugation length, and of the Huang-Rhys factors are discussed. The asymmetric character of the pure electronic transition peak and the contribution of the individual vibrational modes to the first vibronic band line shape are considered by a model developed by Cury et al. [J. Chem. Phys. 121, 3836 (2004)]. The temperature dependence of the Huang-Rhys factors of the main vibrational modes pertaining to the first vibronic band allows us to identify two competing vibrational modes. These results show that the electron coupling to different vibrational modes depends on temperature via reduction of thermal disorder.  相似文献   
984.
The tetraoxido ruthenium(VIII) radical cation, [RuO4]+, should be a strong oxidizing agent, but has been difficult to produce and investigate so far. In our X-ray absorption spectroscopy study, in combination with quantum-chemical calculations, we show that [RuO4]+, produced via oxidation of ruthenium cations by ozone in the gas phase, forms the oxygen-centered radical ground state. The oxygen-centered radical character of [RuO4]+ is identified by the chemical shift at the ruthenium M3 edge, indicative of ruthenium(VIII), and by the presence of a characteristic low-energy transition at the oxygen K edge, involving an oxygen-centered singly-occupied molecular orbital, which is suppressed when the oxygen-centered radical is quenched by hydrogenation of [RuO4]+ to the closed-shell [RuO4H]+ ion. Hydrogen-atom abstraction from methane is calculated to be only slightly less exothermic for [RuO4]+ than for [OsO4]+.  相似文献   
985.
Cartilage replacement materials exhibiting a set of demanding properties such as high water content, high mechanical stiffness, low friction, and excellent biocompatibility are quite difficult to achieve. Here, poly(p-phenylene-2,6-benzobisoxazole) (PBO) nanofibers are combined with polyvinyl alcohol (PVA) to form a super-strong structure with a performance that surpasses the vast majority of previously existing hydrogels. PVA–PBO composites with water contents in the 59–76% range exhibit tensile and compressive moduli reaching 20.3 and 4.5 MPa, respectively, and a coefficient of friction below 0.08. Further, they are biocompatible and support the viability of chondrocytes for 1 week, with significant improvements in cell adhesion, proliferation, and differentiation compared to PVA. The new composites can be safely sterilized by steam heat or gamma radiation without compromising their integrity and overall performance. In addition, they show potential to be used as local delivery platforms for anti-inflammatory drugs. These attractive features make PVA–PBO composites highly competitive engineered materials with remarkable potential for use in the design of load-bearing tissues. Complementary work has also revealed that these composites will be interesting alternatives in other industrial fields where high thermal and mechanical resistance are essential requirements, or which can take advantage of the pH responsiveness functionality.  相似文献   
986.
Deposit formation and fouling in reactors for polymer production and processing especially in microreactors is a well-known phenomenon. Despite the flow and pressure loss optimized static mixers, fouling occurs on the surfaces of the mixer elements. To improve the performance of such parts even further, stainless steel substrates are coated with ultra-thin films which have low surface energy, good adhesion, and high durability. Perfluorinated organosilane (FOTS) films deposited via chemical vapor deposition (CVD) are compared with FOTS containing zirconium oxide sol-gel films regarding the prevention of deposit formation and fouling during polymerization processes in microreactors. Both film structures led to anti-adhesive properties of microreactor component surfaces during aqueous poly(vinylpyrrolidone) (PVP) synthesis. To determine the morphology and surface chemistry of the coatings, different characterization methods such as X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy as well as microscopic methods such as field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) are applied. The surface free energy and wetting properties are analyzed by means of contact angle measurements. The application of thin film-coated mixing elements in a microreactor demonstrates a significant lowering in pressure increase caused by a reduced deposit formation.  相似文献   
987.
ABSTRACT

Based on ab initio calculations, our research group has built an analytical ground-state potential energy surface (PES) for hydrogen peroxide– noble gas (Ng) interactions, such as H2O2–He, H2O2–Ne, H2O2–Ar, H2O2–Kr, and H2O2–Xe complexes. From this PES, it was verified that the Ng presence does not affect the equilibrium values of the H2O2 dihedral angles. This happens because the H2O2 intramolecular barriers have much higher energies than the atom–bond interaction within these complexes. From this point of view, it is indeed reasonable to consider the H2O2 system as a rigid rotor, frozen at its equilibrium configuration. We present in this work the torsional motion for the H2O2 isolated system, the vibration–rotation energy levels and spectroscopic constants for hydrogen peroxide–noble gas by using the aforementioned PES. The predicted H2O2 torsional motions are in good agreement with both theoretical and experimental results available in the literature. Regarding H2O2–Ng ro-vibrational energies and spectroscopic constants, it is the first time that these calculations are presented in the literature. The current theoretical predictions are expected to be useful in the future experimental investigations.  相似文献   
988.
SCHENBERG is a resonant-mass gravitational wave detector built in Brazil. Its spherical antenna, weighting 1.15 t, is connected to the outside world by a suspension system whose main function is to attenuate the external seismic noise. In this work, we report how the system was modeled using finite elements method. The model was validated on experimental data. The simulation showed that the attenuation obtained is of the order of 260 dB, which is sufficient for decreasing the seismic noise below the level of the thermal noise of the detector operating at 50 mK.  相似文献   
989.
990.
The car interior is becoming quieter and other sounds are now exposed to user perception, such as the sound produced by interface buttons when actuated. So, the functional role of the button sound on interface operation and its aesthetic and emotional role on the user experience are now more important than before. However, little research and design effort has been paid to understand how to design buttons that produce a pleasant sound. Moreover, the button’s sound requirements received by interface manufacturers are ill-defined, insufficient or even inexistent, and consequently their conversion into specifications for manufacturing is problematic and leads to long and costly development processes. The purpose of this paper is to contribute to identify relevant acoustic parameters that explain the users sound preferences. Data on preference subjective judgments were collected and buttons acoustic signals were measured allowing the development of preference models based on partial least squares regression and neural networks methods. The former was successful in selecting the relevant parameters to describe the preference ratings of the buttons sound. The later, dealing with the non-linear nature of acoustic perception, was able to predict preferences based on the relevant parameters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号