首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   735篇
  免费   36篇
化学   692篇
力学   2篇
数学   14篇
物理学   63篇
  2022年   4篇
  2021年   10篇
  2020年   35篇
  2019年   20篇
  2018年   5篇
  2017年   9篇
  2016年   23篇
  2015年   20篇
  2014年   21篇
  2013年   26篇
  2012年   44篇
  2011年   52篇
  2010年   33篇
  2009年   21篇
  2008年   60篇
  2007年   52篇
  2006年   50篇
  2005年   46篇
  2004年   41篇
  2003年   20篇
  2002年   23篇
  2001年   11篇
  2000年   18篇
  1999年   10篇
  1998年   11篇
  1997年   2篇
  1996年   10篇
  1995年   3篇
  1994年   3篇
  1993年   12篇
  1992年   3篇
  1991年   4篇
  1990年   6篇
  1989年   8篇
  1988年   4篇
  1987年   6篇
  1986年   6篇
  1985年   6篇
  1984年   3篇
  1983年   4篇
  1981年   2篇
  1979年   3篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1973年   7篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有771条查询结果,搜索用时 187 毫秒
71.
Silicon analogues of the most prominent carbon nanostructures, namely, hollow spheroidals such as C60 and the fullerene family, have been unknown to date. Herein we show that discrete Si20 dodecahedra, stabilized by an endohedral guest and valence saturation, are accessible in preparative yields through a chloride‐induced disproportionation reaction of hexachlorodisilane in the presence of tri(n‐butyl)amine. X‐ray crystallography revealed that each silicon dodecahedron contains an endohedral chloride ion that imparts a net negative charge. Eight chloro substituents and twelve trichlorosilyl groups are attached to the surface of each cluster in a strictly regioregular arrangement, a thermodynamically preferred substitution pattern according to quantum‐chemical assessment. Our results demonstrate that the wet‐chemical self‐assembly of a complex, monodisperse Si nanostructure is possible under mild conditions starting from simple Si2 building blocks.  相似文献   
72.
For Raman spectroscopic analyses of the cells and other biological samples, the choice of the right substrate material is very important to avoid loss of information in characteristic spectral features because of competing background signals. In the current study, Raman spectroscopy is used to characterize several potential Raman substrates. Raman vibrational bands of the substrate material are discussed. The surface topography is analyzed by atomic force microscopy, and the root mean square surface roughness values are reported. Biocompatibility of the substrates is tested with Hep G2 cells evaluating cellular morphology as well as live/dead staining. Calcium fluoride, silicon, fused silica, borofloat glass, and silicon nitride membranes support cell growth and adherence. Silicon, borofloat glass, and fused silica give rise to Raman signals in the region of interest. Calcium fluoride substrate (UV grade) is suitable for Raman spectroscopic investigation of living cells. Nickel foil is suitable substrate for Raman spectroscopic investigation but cellular adherence and viability depend on the quality of the foil. Silicon nitride membranes coated with nickel chrome is a suitable Raman substrate in closed microfluidic systems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
73.
The reaction of Cs3As7 with diphenylacetylene in the presence of 18 crown‐6 in liquid ammonia results in the formation of the new compound [Cs( 18 crown‐6)]2As7C14H11 · 6NH3, which crystallizes in black monoclinic crystals. It contains the first monosubstituated heptaarsenide anion with a hydrocarbon‐only substituent and theoretical calculations show a significant influence of the organic substituent on the electronic structure within the cage. The (Z)‐1, 2‐diphenylethenyl‐heptaarsenide di‐anion can be seen as the first step towards the formation of 1, 2,3‐triarsolides. Further experiments regarding the reaction of Rb3As11 and Cs3As11 with acetylene gas in liquid ammonia reveal the formation of the diarsabarrelene As2C6H6, which crystallizes as colorless orthorhombic crystals. Calculations based on the structural data obtained by X‐ray crystallography show the electronically inert character of the arsenic lone pair.  相似文献   
74.
The detection of oligoclonal bands (OCBs) in cerebrospinal fluid is an indicator of intrathecal synthesis of immunoglobulins which is a neurochemical sign of chronic inflammatory brain diseases. Intrathecally synthesized IgGs are typically observed in patients with multiple sclerosis. The current standard protocol for the detection of OCBs is IEF on agarose or polyacrylamide gels followed by immunoblotting or silver staining. These methods are time consuming, show substantial interlaboratory variation and cannot be used in a high throughput‐approach. We have developed a new nanoscale method for the detection of OCBs based on automated capillary IEF followed by immunological detection. Evidence for intrathecal IgG synthesis was found in all tested patients (n = 27) with multiple sclerosis, even in two subjects who did not have oligoclonal bands according to standard methods. The test specificity was at 97.5% (n = 19). Our findings indicate that the novel OCB‐CIEF‐immunoassay is suitable for the rapid and highly sensitive detection of OCBs in clinical samples. Furthermore, the method allows for a higher sample throughput than the current standard methods.  相似文献   
75.
76.
Described herein are two series (twelve compounds each) of very closely related guanidinium‐based receptors and their ability to catalyze hydrolytic cleavage of a unique RNA substrate – oligo‐dT flanked t rans‐ A ctivation R esponsive region of the HIV‐1 mRNA, TAR RNA. The significant difference in activities of otherwise very similar compounds is discussed, and direct and indirect evidences supporting our interpretation are presented. The results indicate that improvements in catalytic efficiency could be achieved with little modification of the structure of a relatively weak catalyst, and that a crucial feature could be a finely calibrated interplay between anion‐binding and proton‐donating abilities.  相似文献   
77.
In nature, mineralization of hard tissues occurs due to the synergistic effect of components present in the organic matrix of these tissues, with templating and catalytic effects. In Suberites domuncula, a well-studied example of the class of demosponges, silica formation is mediated and templated by an axial proteinaceous filament with silicatein-α, one of the main components. But so far, the effect of other organic constituents from the proteinaceous filament on the catalytic effect of silicatein-α has not been studied in detail. Here we describe the synthesis of core-shell TiO(2)@SiO(2) and TiO(2)@ZrO(2) nanofibers via grafting of silicatein-α onto a TiO(2) nanowire backbone followed by a coassembly of silintaphin-1 through its specifically interacting domains. We show for the first time a linker-free, one-step funtionalization of metal oxides with silicatein-α using glutamate tag. In the presence of silintaphin-1 silicatein-α facilitates the formation of a dense layer of SiO(2) or ZrO(2) on the TiO(2)@protein backbone template. The immobilization of silicatein-α onto TiO(2) probes was characterized by atomic force microscopy (AFM), optical light microscopy, and high-resolution transmission electron microscopy (HRTEM). The coassembly of silicatein-α and silintaphin-1 may contribute to biomimetic approaches that pursue a controlled formation of patterned biosilica-based biomaterials.  相似文献   
78.
79.
The preparation of nanoengineered materials with controlled nanostructures, for example, with an anisotropic phase segregated structure or a regular periodicity rather than with a broad range of interparticle distances, has remained a synthetic challenge for intermetallics. Artificially structured materials, including multilayers, amorphous alloys, quasicrystals, metastable crystalline alloys, or granular metals, are mostly prepared using physical gas phase procedures. We report a novel, powerful solution-mediated approach for the formation of nanoparticular binary antimonides based on presynthesized antimony nanoparticles. The transition metal antimonides M-Sb (M = Co, Ni, Cu(2), Zn) were obtained with sizes ranging from 20 and 60 nm. Through careful control of the reaction conditions, single-phase nanoparticular antimonides were synthesized. The nanophases were investigated by powder X-ray diffraction and (high resolution) electron microscopy. The approach is based on activated metal nanoparticles as precursors for the synthesis of the intermetallic compounds. X-ray powder diffraction studies of reaction intermediates allowed monitoring of the reaction kinetics. The small particle size of the reactants ensures short diffusion paths, low activation barriers, and low reaction temperatures, thereby eliminating solid-solid diffusion as the rate-limiting step in conventional bulk-scale solid-state synthesis.  相似文献   
80.
Understanding how solids form is a challenging task, and few strategies allow for elucidation of reaction pathways that are useful for designing the synthesis of solids. Here, we report a powerful solution-mediated approach for formation of nanocrystals of the thermoelectrically promising FeSb(2) that uses activated metal nanoparticles as precursors. The small particle size of the reactants ensures minimum diffusion paths, low activation barriers, and low reaction temperatures, thereby eliminating solid-solid diffusion as the rate-limiting step in conventional bulk-scale solid-state synthesis. A time- and temperature-dependent study of formation of nanoparticular FeSb(2) by X-ray powder diffraction and iron-57 M?ssbauer spectroscopy showed the incipient formation of the binary phase in the temperature range of 200-250 °C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号