首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   498篇
  免费   28篇
化学   365篇
晶体学   1篇
力学   13篇
数学   26篇
物理学   121篇
  2023年   9篇
  2022年   5篇
  2021年   12篇
  2020年   16篇
  2019年   31篇
  2018年   8篇
  2017年   7篇
  2016年   17篇
  2015年   13篇
  2014年   22篇
  2013年   28篇
  2012年   61篇
  2011年   44篇
  2010年   28篇
  2009年   16篇
  2008年   28篇
  2007年   32篇
  2006年   29篇
  2005年   29篇
  2004年   17篇
  2003年   9篇
  2002年   5篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   5篇
  1995年   2篇
  1994年   3篇
  1993年   5篇
  1992年   2篇
  1991年   1篇
  1988年   2篇
  1987年   3篇
  1985年   4篇
  1984年   6篇
  1983年   2篇
  1982年   3篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1971年   1篇
排序方式: 共有526条查询结果,搜索用时 218 毫秒
41.
A series of novel wurtzite cadmium sulphide (CdS) nanowires with uniform diameter were synthesized by using a rapid and simple solvothermal route. CdS nano structures with certain morphology could be selectively produced by only varying the concentration of poly ethylene glycol (PEG) as a surfactant in the reaction system with cadmium acetate, sulphur powder and ethelynediamine (EDA). We extensively studied UV-vis absorption spectra, photoluminescence spectra after confirming CdS nanowires with diameter 24-25 nm and length ranging up to several nano meters by field emission scanning electron microscopy (FE-SEM). Therefore we may definitely propose a new formation mechanism of CdS nanowires assisted by PEG with its illustrating optical properties.  相似文献   
42.
β-Ga2O3 nanostructures including nanowires, nanoribbons and nanosheets were synthesized via thermal annealing of gold coated GaAs substrates in N2 ambient. GaAs substrates with different dopants were taken as the starting material to study the effect of doping on the growth and photoluminescence properties of β-Ga2O3 nanostructures. The nanostructures were investigated by Grazing Incident X-ray Diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Energy Dispersive X-ray Spectroscopy, room temperature photoluminescence and optical absorbance. The selected area electron diffraction and High resolution-TEM observations suggest that both nanowires and nanobelts are single crystalline. Different growth directions were observed for nanowires and nanoribbons, indicating the different growth patterns of these nanostructures. The PL spectra of β-Ga2O3 nanostructures exhibit a strong UV-blue emission band centered at 410 nm, 415 nm and 450 nm for differently doped GaAs substrates respectively. A weak red luminescence peak at 710 nm was also observed in all the samples. The optical absorbance spectrum showed intense absorption features in the UV spectral region. The growth and luminescence mechanism in β-Ga2O3 nanostructures are also discussed.  相似文献   
43.
This paper presents an investigation of compound hadrons (pions and protons) distribution emitted from 24Mg-AgBr and 12C-AgBr interactions both at 4.5 AGeV and 32S-AgBr interactions at 200 AGeV. The study includes azimuthal correlations (two particle and three particle), azimuthal asymmetry and fractal behaviour. This paper reveals some interesting results.  相似文献   
44.
45.
Transition Metal Chemistry - The title reaction has been studied spectrophotometrically and a rate-law established within the pH range 5.0 to 6.5, $$ {?...  相似文献   
46.
Interpenetrating metal organic frameworks are interesting functional materials exhibiting exceptional framework properties. Uptake or exclusion of guest molecules can induce sliding in the framework making it porous or non‐porous. To understand this dynamic nature and how framework interaction changes during sliding, metal organic framework (MOF) 508 {Zn(BDC)( 4,4′‐Bipy)0.5 · DMF(H2O)0.5} was selected for study. We have investigated structural transformation in MOF‐508 under variable conditions of temperature, pressure and gas loading using Raman spectroscopy and substantiated it with IR studies and density functional theory (DFT) calculations. Conformational changes in the organic linkers leading to the sliding of the framework result in changes in Raman spectra. These changes in the organic linkers are measured as a function of high pressure and low temperature, suggesting that the dynamism in MOF‐508 framework is driven by ligand conformation change and inter‐linker interactions. The presence of Raman signatures of adsorbed CO2 and its librational mode at 149 cm−1 suggests cooperative adsorption of CO2 in the MOF‐508 framework, which is also confirmed from DFT calculations that give a binding energy of 34 kJ/mol. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
47.
Cyanide is an extremely toxic lethal poison known to humankind. Developing rapid, highly sensitive, and selective detection of cyanide from water samples is extremely essential for human life safety. Driven by the need, here we report a gold-nanoparticle-based label-free surface-enhanced Raman spectroscopy (SERS) system for highly toxic cyanide ion recognition in parts-per-trillion level and to examine gold-nanoparticle-cyanide interaction. We have shown that the SERS assay can be used to probe the gold nanoparticle dissociation process in the presence of cyanide ions. Our experimental data indicates that gold-nanoparticle-based SERS can detect cyanide from a water sample at the 110 ppt level with excellent discrimination against other common anions and cations. The results also show that the SERS probe can be used to detect cyanide from environmental samples.  相似文献   
48.
Norharmane provides a simple unexplored class of anion receptor, that allows for the ratiometric selective detection of F(-) and HSO(4)(-) ions. The presence of a strong base can easily form hydrogen bonds with the acidic hydrogen bond donor moiety and the relatively strong acid can easily protonate the basic hydrogen bond acceptor moiety, which can modulate the optical response and can detect the anions efficiently with high selectivity. In view of that, it is promising to conceive the use of these systems in various sensing applications as well as in other situations, such as anion transport and purification, where the availability of cheap and easy-to-make anion receptors, would be advantageous.  相似文献   
49.
A new copper modified amine functionalized zirconia has been synthesized by a co-condensation method using zirconium butoxide and aminopropyltriethoxy-silane (APTES) in the presence of a cationic surfactant CTAB followed by impregnation of copper. Nitrogen adsorption-desorption, X-ray powder diffraction, Fourier-transform infrared spectroscopy (FT-IR), (13)C nuclear magnetic resonance (NMR), scanning electron micrography (SEM), transmittance electron micrography (TEM), thermo gravimetric analysis-differential thermal analysis (TGA-DTA), X-ray photoelectron spectroscopy (XPS) and UV-vis DRS spectroscopic tools are used to characterize the materials. FT-IR and DRS results indicated the incorporation of Cu and amino groups on the surface of zirconia. This Cu-anchored mesoporous material acts as an efficient, reusable catalyst in the aryl-sulfur coupling reaction between aryl iodide and thiophenol for the synthesis of value added diarylsulfides.  相似文献   
50.
We report the synthesis, characterization and relaxometric study of ferrofluids based on iron oxide, with potential for use as magnetic resonance imaging (MRI) contrast agents (CAs). The effect of different cost-effective, water-based surface modification approaches which can be easily scaled-up for the large scale synthesis of the ferrofluids has been investigated. Surface modification was achieved by silanization, and/or coating with non-toxic commercial dispersants (a lauric polysorbate and a block copolymer with pigment affinic groups, namely Tween 20 and Disperbyk 190) which were added after or during iron oxide nanoparticle synthesis. It was observed that all the materials synthesized functioned as negative contrast agents at physiological temperature and at frequencies covered by clinical imagers. The relaxometric properties of the magnetic nanoparticles were significantly improved after surface coating with stabilizers compared to the original iron oxide nanoparticles, with particular reference to the silica-coated magnetic nanoparticles. The results indicate that the optimization of the preparation of colloidal magnetic ferrofluids by surface modification is effective in the design of novel contrast agents for MRI by enabling better or more effective interaction between the coated iron oxide nanoparticles and protons present in their aqueous environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号