首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   691篇
  免费   27篇
  国内免费   5篇
化学   555篇
晶体学   4篇
力学   11篇
数学   81篇
物理学   72篇
  2023年   2篇
  2022年   7篇
  2021年   14篇
  2020年   11篇
  2019年   6篇
  2018年   8篇
  2017年   3篇
  2016年   18篇
  2015年   22篇
  2014年   20篇
  2013年   32篇
  2012年   45篇
  2011年   72篇
  2010年   32篇
  2009年   25篇
  2008年   45篇
  2007年   55篇
  2006年   45篇
  2005年   37篇
  2004年   42篇
  2003年   41篇
  2002年   33篇
  2001年   12篇
  2000年   7篇
  1999年   5篇
  1998年   7篇
  1997年   10篇
  1996年   10篇
  1995年   5篇
  1994年   7篇
  1993年   8篇
  1992年   1篇
  1991年   5篇
  1990年   1篇
  1989年   4篇
  1988年   3篇
  1987年   1篇
  1986年   4篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1975年   2篇
  1974年   2篇
排序方式: 共有723条查询结果,搜索用时 31 毫秒
31.
We demonstrate an efficient strategy to anchor poly(3‐hexylthiophene) (P3HT) onto zinc oxide (ZnO) surfaces. Synthesis of a novel triethoxysilane‐terminated regioregular P3HT is herein reported and supported by thorough characterization. Three triethoxysilane‐terminated P3HTs of different molar masses were prepared via a hydrosilylation reaction from allyl‐terminated P3HT. MALDI‐TOF and 1H NMR were performed to characterize the polymer and show that around 80% of the chains are end‐functionalized. These polymers were then grafted onto the ZnO nanorods to create a macromolecular self‐assembled monolayer. This versatile technique could be subsequently applied to different metal oxide surfaces, such as silicon, titanium, or indium‐tin oxide, and represents a new one‐pot strategy based on triethoxysilane coupling reaction. Importantly, the influence of the molar mass on the grafting density and the polymer shell thickness was studied via thermo gravimetric analysis and transmission electron microscopy. The optical properties of the hybrid materials were determined by UV–visible absorption and photoluminescence to show a quenching effect of P3HT fluorescence by ZnO when grafted. This electronic transfer associated with an improved miscibility of the ZnO@P3HT, makes these hybrid materials suitable candidates for photovoltaic applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 30–38  相似文献   
32.
Composites based on biocompatible thermoplastic elastomer styrene‐ethylene/butylene‐styrene (SEBS) as matrix and multi‐walled carbon nanotubes (MWCNT) as nanofillers show excellent mechanical and piezoresistive properties from low to large deformations. The MWCNT/SEBS composites have been prepared following a green solvent approach, to extend their range of applicability to biomedical applications. The obtained composites with 2, 4, and 5 wt % MWCNT content provide suitable piezoresistive response up to 80% deformation with a piezoresistive sensibility near 2.7, depending on the applied strain and MWCNT content. Composite sensors were also developed by spray and screen printing and integrated with an electronic data acquisition system with RF communication. The possibility to accurately control the composites properties and performance by varying MWCNT content, viscosity, and mechanical properties of the polymer matrix, shows the large potential of the system for the development of large deformation printable piezoresistive sensors. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2092–2103  相似文献   
33.
Boronic acids (R‐B(OH)2) are a family of molecules that have found a large number of applications in materials science. In contrast, boronate anions (R‐B(OH)3?) have hardly been used so far for the preparation of novel materials. Here, a new crystalline phase involving a boronate ligand is described, Ca[C4H9‐B(OH)3]2, which is then used as a basis for the establishment of the spectroscopic signatures of boronates in the solid state. The phase was characterized by IR and multinuclear solid‐state NMR spectroscopy (1H, 13C, 11B and 43Ca), and then modeled by periodic DFT calculations. Anharmonic OH vibration frequencies were calculated as well as NMR parameters (by using the Gauge Including Projector Augmented Wave—GIPAW—method). These data allow relationships between the geometry around the OH groups in boronates and the IR and 1H NMR spectroscopic data to be established, which will be key to the future interpretation of the spectra of more complex organic–inorganic materials containing boronate building blocks.  相似文献   
34.
The small and synthetically easily accessible coumarinylmethyl backbone has been modified to generate a family of photolabile protecting groups with redshifted absorption. We relied on introducing electron‐donating groups in the 7 position and electron‐withdrawing groups in the 2‐, and 2‐ and 3 positions. In particular, we showed that the diethylamino‐thiocoumarylmethyl and the diethylamino‐coumarylidenemalononitrilemethyl are relevant for uncaging with cyan light. They both exhibit a significant action cross section for uncaging in the 470–500 nm wavelength range and a low light absorption between 350 and 400 nm. These attractive features are favorable to perform chromatic orthogonal photoactivation with UV and blue‐cyan light sources, respectively.  相似文献   
35.
36.
A series of 9-(hetero)arylpurine derivatives has been prepared through N-arylation of 6-chloropurine with boronic acids in the presence of copper(II) acetate. Screening reaction conditions in terms of bases and solvents led to the successful coupling of a series of sterically demanding (hetero)arylboronic acids, never described so far. The coupling products were next readily converted into the target adenine derivatives. The described procedure provides easy access to original fragments for screening applications. Moreover these 9-aryl-6-chloropurine derivatives might be useful as intermediates for the preparation of purine derivatives with potential biological properties.  相似文献   
37.
Solanum somalense leaves, used in Djibouti for their medicinal properties, were extracted by MeOH. Because of the high polyphenol and flavonoid contents of the extract, respectively, determined at 80.80 ± 2.13 mg gallic acid equivalent/g dry weight and 24.4 ± 1.01 mg quercetin equivalent/g dry weight, the isolation and purification of the main polyphenols were carried out by silica gel column chromatography and centrifugal partition chromatography. Column chromatography led to 11 enriched fractions requiring further purification, while centrifugal partition chromatography allowed the easy recovery of the main compound of the extract. In a solvent system composed of CHCl3/MeOH/H2O (9.5:10:5), 21.8 mg of this compound at 97% purity was obtained leading to a yield of 2.63%. Its structure was established as 5‐O‐caffeoylshikimic acid by mass spectrometry and NMR spectroscopy. This work shows that S. somalense leaves contain very high level of 5‐O‐caffeoylshikimic acid (0.74% dry weight), making it a potential source of production of this secondary metabolite that is not commonly found in nature but could be partly responsible of the medicinal properties of S. somalense leaves.  相似文献   
38.
The functionalization of zinc oxide (ZnO) nanoparticles by poly(3‐hexylthiophene) (P3HT) brush is completed by the combination of a mussel inspired biomimetic anchoring group and Huisgen cyclo‐addition “click chemistry.” Herein, the direct coupling of an azide modified catechol derivative with an alkyne end‐functionalized P3HT is described. This macromolecular binding agent is used to access core@corona ZnO@P3HT with a stable and homogeneous conjugated organic corona. Preliminary photoluminescence measurement proves an efficient electron transfer from the donor P3HT to the acceptor ZnO nanoparticles upon grafting, thus demonstrating the potential of such a combination in organic electronics.

  相似文献   

39.
Estuaries are key ecosystems with unique biodiversity and are of high economic importance. Along the estuaries, variations in environmental parameters, such as salinity and light penetration, can modify the characteristics of dissolved organic matter (DOM). Nevertheless, there is still limited information about the atomic-level transformations of DOM in this ecosystem. Solid-state NMR spectroscopy provides unique insights into the nature of functional groups in DOM. A major limitation of this technique is its lack of sensivity, which results in experimental time of tens of hours for the acquisition of 13C NMR spectra and generally precludes the observation of 15N nuclei for DOM. We show here how the sensitivity of solid-state NMR experiments on DOM of Seine estuary can be enhanced using dynamic nuclear polarization (DNP) under magic-angle spinning. This technique allows the acquisition of 13C NMR spectra of these samples in few minutes, instead of hours for conventional solid-state NMR. Both conventional and DNP-enhanced 13C NMR spectra indicate that the 13C local environments in DOM are not strongly modified along the Seine estuary. Furthermore, the sensitivity gain provided by the DNP allows the detection of 15N NMR signal of DOM, in spite of the low nitrogen content. These spectra reveal that the majority of nitrogen is in the amide form in these DOM samples and show an increased disorder around these amide groups near the mouth of the Seine.  相似文献   
40.
Polysaccharide nanoparticles are promising materials in the wide range of disciplines such as medicine, nutrition, food production, agriculture, material science and others. They excel not only in their non‐toxicity and biodegradability but also in their easy preparation. As well as inorganic particles, a protein corona (PC) around polysaccharide nanoparticles is formed in biofluids. Moreover, it has been considered that the overall response of the organism to nanoparticles presence depends on the PC. This review summarises scientific publications about the structural chemistry of polysaccharide nanoparticles and their impact on theranostic applications. Three strategies of implementation of the PC in theranostics have been discussed: I) Utilisation of the PC in therapy; II) How the composition of the PC is analysed for specific disease markers; III) How the formed PC can interact with the immune system and enhances the immunomodulation or immunoelimination. Thus, the findings from this review can contribute to improve the design of drug delivery systems. However, it is still necessary to elucidate the mechanisms of nano‐bio interactions and discover new connections in nanoscale research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号