首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1581篇
  免费   111篇
  国内免费   2篇
化学   1264篇
晶体学   3篇
力学   36篇
综合类   1篇
数学   194篇
物理学   196篇
  2023年   28篇
  2022年   19篇
  2021年   31篇
  2020年   59篇
  2019年   36篇
  2018年   23篇
  2017年   17篇
  2016年   83篇
  2015年   76篇
  2014年   69篇
  2013年   77篇
  2012年   102篇
  2011年   104篇
  2010年   75篇
  2009年   59篇
  2008年   100篇
  2007年   105篇
  2006年   103篇
  2005年   91篇
  2004年   79篇
  2003年   58篇
  2002年   34篇
  2001年   27篇
  2000年   18篇
  1999年   21篇
  1998年   10篇
  1997年   10篇
  1996年   4篇
  1994年   5篇
  1993年   6篇
  1992年   11篇
  1991年   9篇
  1990年   5篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   7篇
  1985年   5篇
  1984年   12篇
  1983年   8篇
  1982年   9篇
  1981年   7篇
  1980年   8篇
  1979年   6篇
  1978年   6篇
  1977年   10篇
  1976年   9篇
  1975年   6篇
  1974年   3篇
  1916年   3篇
排序方式: 共有1694条查询结果,搜索用时 397 毫秒
111.
Single‐electron transfer living radical polymerization (SET‐LRP) has developed as a reliable, robust and straight forward method for the construction well‐defined polymers. To span an even larger variety of functional monomers, we investigated the copolymerization of methyl methacrylate with methacrylic acid by SET‐LRP. Copolymerizations were catalyzed by Cu(0)/Me6‐TREN and performed in MeOH/H2O mixtures at 50 °C. The SET‐LRP copolymerizations of varying methacrylic acid content were evaluated by kinetic experiments. At low (2.5%) and moderate (10%) MAA loadings, the copolymerizations obeyed perfect first order kinetics (kpapp = 0.008 min?1 and kpapp = 0.006 min?1) and exhibited a linear increase in molecular weights with conversion providing narrow molecular weight distributions. The SET‐LRP of MMA/25%‐MAA was found to be significantly slower (kpapp = 0.0035 min?1). However, a reasonable first‐order kinetics in monomer consumption was maintained, and the control of the polymerization process was preserved since the molecular weight increased linearly with conversion and could therefore be adjusted. This work demonstrates that the copolymerization of methacrylic acid by SET‐LRP is feasible and the design of well‐defined macromolecules comprising acidic functionality can be achieved. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   
112.
113.
The chromatographic behaviour of a recombinant human antibody (IgG1-subtype, κ-light chain, MW: 149.5 kD, pI: 9.3) was investigated as a function of the buffer pH and buffer type (HEPES, phosphate, borate) on fluoroapatite and hydroxyapatite stationary phases. HEPES buffer was used at pH 7.0, phosphate buffer at pH 8.2 and borate buffer between pH 8.5 and 11. Elution was by a double gradient method of first a salt gradient from 0 to 1 M NaCl in the corresponding buffer, followed by a step gradient to 0.4 M sodium phosphate. Regardless of the pH and buffer type, the antibody eluted in the NaCl gradient; capacity factors decreased with increasing pH. At pH 11 the antibody eluted in the flow-through. Retention was thus dominated by electrostatic interaction throughout the investigated pH-range. Investigation of antibody fragments obtained by papain digestion (fc- and fab-fragments) and deglycosylated fc-fragments showed that the sugar structures had no influence on the chromatographic behaviour. Instead the chromatographic behaviour was dominated by that of the fab-fragment. ζ-Potential measurements verified that the apatite surface bore a negative surface charge in the investigated pH range, while the antibody net surface charge switched from positive to negative as the pH increased. The corresponding isoionic point was a function of both the buffer concentration and the buffer species. However, above a pH of 8.3 the ζ-potential of the antibody generally was negative. Simulations of the molecular electrostatic potential of the antibody and the two fragments revealed the presence of a positively charged patch within the fab-fragment, which only disappeared above a pH of 10. Most likely this patch was responsible for the observed behaviour.  相似文献   
114.
115.
Six new methyl silicon (IV) precursors of the type [MeSi{ON?C(R)Ar}3] [when R = Me, Ar = 2‐C5H4N ( 1 ), 2‐C4H3O ( 2 ) or 2‐C4H3S ( 3 ); and when R = H, Ar = 2‐C5H4N ( 4 ), 2‐C4H3O ( 5 ) or 2‐C4H3S ( 6 )] were prepared and structurally characterized by various spectroscopic techniques. Molecular weight measurements and FAB (Fast Atomic Bombardment) mass spectral studies indicated their monomeric nature. 1H and 13C{1H} NMR spectral studies suggested the oximate ligands to be monodentate in solution, which was confirmed by 29Si{1H} NMR signals in the region expected for tetra‐coordinated methylsilicon (IV) derivatives. Thermogravimetric analysis of 1 revealed the complex to be thermally labile, decomposing to a hybrid material of definite composition. Two representative compounds ( 2 and 4 ) were studied as single source molecular precursor for low‐temperature transformation to silica‐based hybrid materials using sol–gel technique. Formation of homogenous methyl‐bonded silica materials (MeSiO3/2) at low sintering temperature was observed. The thermogravimetric analysis of the methylsilica material indicated that silicon‐methyl bond is thermally stable up to a temperature of 400 °C. Reaction of 2 and Al(OPri)3 in equimolar ratio in anhydrous toluene yielded a brown‐colored viscous liquid of the composition [MeSi{ON?C(CH3)C4H3O}3.Al(OPri)3]. Spectroscopic techniques 1H, 13C{1H}, 27Al{1H} and 29Si{1H} NMR spectra of the viscous product indicated the presence of tetracoordination around both silicon and aluminum atoms. On hydrolysis it yielded methylated aluminosilicate material with high specific surface area (464 m2/g). Scanning electron micrography confirmed a regular porous structure with porosity in the nanometric range. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
116.
In multivariate data analysis such as principal components analysis (PCA) and projections to latent structures (PLS), it is essential that the training set systems (objects) are selected to provide data with substantial information for model parametrization, and to represent properly any future situations where the multilvariate model is used for predictions. In the framework of multivariate projections (PCA, SIMCA and PLS), elementary concepts of statistical design (fractional factorials and composite designs) can be used with the latent variables (PC or PLS scores) as design variables. The plan of action thus becomes: (1) problem formulation (specify aim and model, make a conceptual division of the investigated system into subsystems); (2) collection of multivariate data for each type of subsystems; (3) estimation of the practical dimensionality of the data for each type of subsystems by PC or PLS analysis; (4) use of the PC or PLS scores (t) as design variables in the combination of subsystems to systems in the training set; (5) measurement of responses (Y); (6) analysis of data by PCA or PLS; (7) interpretation of results with possible feedback to steps 1, 2 or 3. The procedures are illustrated by two problems: a structure/activity relationship for a family of peptides, and optimization of an organic synthesis with respect to system variables (solvent, substrate, co-reactant_) and process variables (temperature, reactant concentrations).  相似文献   
117.
118.
The orientation behavior of isotactic polypropylene (iPP) in α‐ and β‐crystal form was investigated by rheo‐optical Fourier transformed infrared (FTIR) spectroscopy. This method enabled quantification of the degree of orientation as a feature of structural changes during uniaxial elongation in not only the crystalline phase but also the amorphous one. Molecular orientation mechanisms can be successfully derived from experimental results. Generally, three mechanisms were detected for iPP: (1) interlamellar separation in the amorphous phase, (2) interlamellar slip and lamellar twisting at small elongations, and (3) intralamellar slip at high elongations. The third mechanism was favored by α‐PP, whereas β‐PP favored the second mechanism, which, in fact, was responsible for the different mechanical properties of both materials at the macroscopic level. On the other hand, crystallization conditions may have significantly affected the amorphous orientation. Nevertheless, for both iPP types the chains in the amorphous phase always oriented less than did those in the crystalline phase. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4478–4488, 2004  相似文献   
119.
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号