首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   485篇
  免费   11篇
  国内免费   2篇
化学   353篇
晶体学   13篇
力学   24篇
数学   34篇
物理学   74篇
  2023年   2篇
  2021年   7篇
  2020年   16篇
  2019年   17篇
  2018年   10篇
  2017年   13篇
  2016年   16篇
  2015年   8篇
  2014年   7篇
  2013年   38篇
  2012年   30篇
  2011年   51篇
  2010年   29篇
  2009年   26篇
  2008年   38篇
  2007年   24篇
  2006年   29篇
  2005年   21篇
  2004年   24篇
  2003年   14篇
  2002年   9篇
  2001年   4篇
  2000年   5篇
  1999年   5篇
  1998年   3篇
  1997年   3篇
  1996年   5篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1985年   5篇
  1983年   1篇
  1982年   1篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1969年   1篇
  1968年   1篇
  1965年   1篇
  1961年   1篇
排序方式: 共有498条查询结果,搜索用时 359 毫秒
11.
Four new iron(III) complexes of the bis(phenolate) ligands N,N-dimethyl-N',N'-bis(2-hydroxy-3,5-dimethylbenzyl)ethylenediamine [H2(L1)], N,N-dimethyl-N',N'-bis(2-hydroxy-4-nitrobenzyl)ethylenediamine [H2(L2)], N,N'-dimethyl-N,N'-bis(2-hydroxy-3,5-dimethylbenzyl)ethylenediamine [H2(L3)], and N,N'-dimethyl-N,N'-bis(2-hydroxy-4-nitrobenzyl)ethylenediamine [H2(L4)] have been isolated and studied as structural and functional models for the intradiol-cleaving catechol 1,2-dioxygenases (CTD). The complexes [Fe(L1)Cl] (1), [Fe(L2)(H2O)Cl] (2), [Fe(L3)Cl] (3), and [Fe(L4)(H2O)Cl] (4) have been characterized using absorption spectral and electrochemical techniques. The single-crystal X-ray structures of the ligand H2(L1) and the complexes 1 and 2 have been successfully determined. The tripodal ligand H2(L1) containing a N2O2 donor set represents the metal-binding region of the iron proteins. Complex 1 contains an FeN2O2Cl chromophore with a novel trigonal bipyramidal coordination geometry. While two phenolate oxygens and an amine nitrogen constitute the trigonal plane, the other amine nitrogen and chloride ion are located in the axial positions. In contrast, 2 exhibits a rhombically distorted octahedral coordination geometry for the FeN2O3Cl chromophore. Two phenolate oxygen atoms, an amine nitrogen atom, and a water molecule are located on the corners of a square plane with the axial positions being occupied by the other nitrogen atom and chloride ion. The interaction of the complexes with a few monodentate bases and phenolates and differently substituted catechols have been investigated using absorption spectral and electrochemical methods. The effect of substituents on the phenolate rings on the electronic spectral features and FeIII/FeII redox potentials of the complexes are discussed. The interaction of the complexes with catecholate anions reveals changes in the phenolate to iron(III) charge-transfer band and also the appearance of a low-energy catecholate to iron(III) charge-transfer band similar to catechol dioxygenase-substrate complexes. The redox behavior of the 1:1 adducts of the complexes with 3,5-di-tert-butylcatechol (H2DBC) has been also studied. The reactivities of the present complexes with H2DBC have been studied and illustrated. Interestingly, only 2 and 4 catalyze the intradiol-cleavage of H2DBC, the rate of oxygenation being much faster for 4. Also 2, but not 4, yields an extradiol cleavage product. The reactivity of the complexes could be illustrated not on the basis of the Lewis acidity of the complexes alone but by assuming that the product release is the rate-determining phase of the catalytic reaction.  相似文献   
12.
A series of Ag(I) complexes ( 6 , 7 , 8 , 9 ) derived from imidazol‐2‐ylidenes was synthesized by reacting Ag2O with an o‐, m‐, p‐xylyl or 1,3,5‐triazine‐linked imidazolium salts ( 1 , 2 , 3 , 4 ) and then characterizing these using various spectro‐analytical techniques. Additionally, triazine‐linked bis‐imidazolium salt 5 was characterized using the single‐crystal X‐ray diffraction method. Complexes 6–9 were formed from the N‐heterocyclic carbene ligand precursors 1–3 as PF6 salts in good yields. Conversely, salt 5 does not form Ag(I) complex even under various reaction conditions. Using ampicillin as a standard, complexes 6–9 were tested against bacteria strains Escherichia coli and Staphylococcus aureus as Gram‐negative and Gram‐positive bacteria, respectively, showing potent antimicrobial activities against the tested bacteria even at minimum inhibition concentration and bacterial concentration levels. Furthermore, the potential anticancer activities of the reported complexes were evaluated against the human colorectal cancer (HCT 116) cell lines, using 5‐fluorouracil as a standard drug. The highest anticancer activities were observed for complex 8 with an IC50 value of 3.4 μm , whereas the lowest was observed for complex 9 with an IC50 value of 18.1 μm . Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
13.
Russian Journal of General Chemistry - A series of novel 1,2,4-thiadiazole derivatives bearing 1,2,4-oxadiazole is synthesized. Structures of the synthesized compounds are confirmed by 1H and 13C...  相似文献   
14.
An enantiospecific first total synthesis of metabolite 7a(S)-p-hydroxyphenopyrrozin 2, isolated from the cultured fungi Chromocleista sp. has been achieved starting from readily and abundantly available l-proline. The strategy of synthesis utilizes base mediated cyclization and base mediated oxygenation as the key steps.  相似文献   
15.
Aryl/alkyl cyanides were quickly converted into the corresponding esters in the presence of iron(III) chloride in refluxing alcohols with very good yields.  相似文献   
16.
Aryl amines react smoothly and efficiently with N-vinyl pyrrolidin-2-one in the presence of 4-nitro phthalic acid in acetonitrile to afford the corresponding 1-(2-methyl-1,2,3,4-tetrahydroquinolin-4-yl)pyrrolidin-2-ones in good yields.  相似文献   
17.
18.
Aqueous organic redox flow batteries (AORFBs) have received considerable attention for large‐scale energy storage. Quinone derivatives, such as 9,10‐anthraquinone‐2,7‐disulphonic acid (2,7‐AQDS), have been explored intensively owing to potentially low cost and swift reaction kinetics. However, the low solubility in pH‐neutral electrolytes restricts their application to corrosive acidic or caustic systems. Herein, the single molecule redox‐targeting reactions of 2,7‐AQDS anolyte are presented to circumvent its solubility limit in pH‐neutral electrolytes. Polyimide was employed as a low‐cost high‐capacity solid material to boost the capacity of 2,7‐AQDS electrolyte to 97 Ah L?1. Through in situ FTIR spectroscopy, a hydrogen‐bonding mediated reaction mechanism was disclosed. In conjunction with NaI as catholyte and nickel hexacyanoferrate as the catholyte capacity booster, a single‐molecule redox‐targeting reaction‐based full cell with energy density up to 39 Wh L?1 was demonstrated.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号