首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   414篇
  免费   20篇
  国内免费   5篇
化学   363篇
晶体学   1篇
力学   2篇
数学   25篇
物理学   48篇
  2024年   2篇
  2023年   5篇
  2022年   9篇
  2021年   13篇
  2020年   19篇
  2019年   15篇
  2018年   11篇
  2017年   21篇
  2016年   13篇
  2015年   16篇
  2014年   24篇
  2013年   38篇
  2012年   29篇
  2011年   29篇
  2010年   25篇
  2009年   24篇
  2008年   28篇
  2007年   25篇
  2006年   14篇
  2005年   6篇
  2004年   5篇
  2003年   7篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1998年   3篇
  1996年   3篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   6篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1948年   1篇
  1947年   1篇
  1946年   2篇
  1935年   1篇
排序方式: 共有439条查询结果,搜索用时 234 毫秒
431.
A facile, efficient and racemization-free method for the synthesis of N-protected β-amino alcohols and peptaibols using N-hydroxysuccinimide active esters is described. Using this method, dipeptide, tripeptide and pentapeptide alcohols were isolated in high yields. The conformations in crystals of β-amino alcohol, dipeptide and tripeptide alcohols were analysed, with a well-defined type III β-turn being observed in the tripeptide alcohol crystals. This method is found to be compatible with Fmoc-, Boc- and other side-chain protecting groups.  相似文献   
432.
Hybrid peptides composed of α‐ and β‐amino acids have recently emerged as new class of peptide foldamers. Comparatively, γ‐ and hybrid γ‐peptides composed of γ4‐amino acids are less studied than their β‐counterparts. However, recent investigations reveal that γ4‐amino acids have a higher propensity to fold into ordered helical structures. As amino acid side‐chain functional groups play a crucial role in the biological context, the objective of this study was to investigate efficient synthesis of γ4‐residues with functional proteinogenic side‐chains and their structural analysis in hybrid‐peptide sequences. Here, the efficient and enantiopure synthesis of various N‐ and C‐terminal free‐γ4‐residues, starting from the benzyl esters (COOBzl) of N‐Cbz‐protected (E)α,β‐unsaturated γ‐amino acids through multiple hydrogenolysis and double‐bond reduction in a single‐pot catalytic hydrogenation is reported. The crystal conformations of eight unprotected γ4‐amino acids (γ4‐Val, γ4‐Leu, γ4‐Ile, γ4‐Thr(OtBu), γ4‐Tyr, γ4‐Asp(OtBu), γ4‐Glu(OtBu), and γ‐Aib) reveals that these amino acids adopted a helix favoring gauche conformations along the central Cγ? Cβ bond. To study the behavior of γ4‐residues with functional side chains in peptide sequences, two short hybrid γ‐peptides P1 (Ac‐Aib‐γ4‐Asn‐Aib‐γ4‐Leu‐Aib‐γ4‐Leu‐CONH2) and P2 (Ac‐Aib‐γ4‐Ser‐Aib‐γ4‐Val‐Aib‐γ4‐Val‐CONH2) were designed, synthesized on solid phase, and their 12‐helical conformation in single crystals were studied. Remarkably, the γ4‐Asn residue in P1 facilitates the tetrameric helical aggregations through interhelical H bonding between the side‐chain amide groups. Furthermore, the hydroxyl side‐chain of γ4‐Ser in P2 is involved in the interhelical H bonding with the backbone amide group. In addition, the analysis of 87 γ4‐residues in peptide single‐crystals reveal that the γ4‐residues in 12‐helices are more ordered as compared with the 10/12‐ and 12/14‐helices.  相似文献   
433.
A clean and efficient Michael addition reaction on chalcones using phosphonium ionic liquid catalyst (PhosIL-Cl) is described. The method provides several advantages, such as simple workup, environmental friendliness, mild conditions, and excellent yields. In addition, the ionic liquid was chosen as a green solvent, recovered, and reused several times in subsequent reactions.  相似文献   
434.
Abstract

A new series of soluble aromatic polyamides was synthesized by low temperature solution polycondensation of novel aromatic diamine namely 3,5-bis-(4′-amino phenyl)-4-(4″-methoxy-2″-pentadecyl phenyl) 1,2,4-triazole (VII) with aromatic diacid chlorides, viz. isophthaloyl chloride (IPC) and terephthaloyl chloride (TPC). The aromaticdiamine (VII) was characterized by elemental analysis, FT-IR, NMR (1H, 13C), and mass spectrometry. Copolyamides were also synthesized by employing various mole proportions of IPC and TPC with diamine (VII). Inherent viscosities of these polyamides were in the range of 0.50–0.65 dL/g in DMAc, indicating formation of moderate to high molecular weight of polyamides. These polyamides showed good solubility in polar aprotic solvents such as N,N-Dimethyl acetamide (DMAc), N-Methyl 2-pyrrolidone (NMP), N, N, Dimethyl formamide (DMF), and Dimethyl sulphoxide (DMSO), which may be due to incorporation of pendant methoxyphenyl moiety with pentadecyl units. The amorphous morphology of polyamides as evidenced by XRD. These polyamides had lower glass transition temperatures; as determined by DSC, compared to the Tg of conventional aromatic polyamides due to internal plasticization effect of long alkyl pentadecyl group. Polymers showed good thermal stability, with initial decomposition temperature above 300?°C.  相似文献   
435.
Synthesis of three novel phenyl(1H-benzoimidazol-5-yl)methanone based fluorescent monoazo disperse dyes and their characterization by spectroscopic methods (1H NMR, 13C NMR, IR and MS) are presented. Insertion of phenyl(1H-benzoimidazol-5-yl)methanone moiety bring about induced fluorescence properties and enhanced photostability as compared to the previously reported analogues (CI Solvent Yellow 14, 4-diethylamino-2-hydroxy-1-diazobenzene and 7-(diethylamino)-4-hydroxy-3-(phenyldiazenyl)-2H-chromen-2-one). Synthesized phenyl(1H-benzoimidazol-5-yl)methanone based dyes exhibited red-shifted absorption maxima (497–516 nm), high molar extinction coefficients and are emitting in the far-red region (565–627 nm). Moreover, naphthalene-comprising dyes showed negative solvatochromism while N,N-diethylamine comprising dyes showed positive solvatochromism and are in good agreement with solvent polarity graphs and the computed energy levels of highest occupied and lowest unoccupied molecular orbitals. Synthesised dyes have better photostability (light fastness) and sublimation fastness on dyed polyester and nylon compared to reported analogues. DFT calculated energies, electrophilicity index and Frontier Molecular Orbitals (FMO’s) enabled to evaluate the stabilities of azo and hydrazone forms of the dyes.  相似文献   
436.
The use of ordinary Portland cement (OPC) in the construction industry is inevitable. The huge production of OPC and its use in infrastructural development pose an environmental impact. Greenhouse gas emitted increases the global temperature and it is an alarming sign to everybody on the planet. Concrete is the most consuming material which is produced by using OPC and it is proven that OPC contributes a lot to CO2 emission. Hence in this study attempt is made to produce concrete by using environment-friendly material like fly ash along with alkaline activators, which is termed Geo polymer concrete. The by-product fly ash is widely available worldwide. It is a by-product of thermal power plants. The use of fly ash in concrete produces less expensive and more cost-effective concrete than concrete made up using OPC. Due to its high silicate and alumina content, fly ash reacts with an alkaline solution to create an aluminosilicate gel that binds the aggregate and results in high-quality concrete. Fly ash is finer than cement, it occupies the pores of cement after hydration. This would result in denser concrete which gives higher strength. In comparison to ordinary concrete, fly ash-based geopolymer concrete offers better resistance to aggressive environments and high temperatures. In the present study, an alkaline activator of molarity 8 is used to prepare geopolymer concrete. The test specimens are cast and cured for 28 days. Test results indicate that an alkaline liquid fly-ash ratio (0.4) produces higher mechanical properties. Hence, geopolymer concrete produced in this study is found to be cost-effective and environment friendly.  相似文献   
437.
The emergence and development of aggregation induced emission (AIE) have attracted worldwide attention due to its unique photophysical phenomenon and for removing the obstacle of aggregation-caused quenching (ACQ) which is the most detrimental process thereby making AIE an important and promising aspect in various fields of fluorescent material, sensing, bioimaging, optoelectronics, drug delivery system, and theranostics. In this review, we have discussed insights and explored recent advances that are being made in AIE active materials and their application in sensing, biological cell imaging, and drug delivery systems, and, furthermore, we explored AIE active fluorescent material as a building block in supramolecular chemistry. Herein, we focus on various AIE active molecules such as tetraphenylethylene, AIE-active polymer, quantum dots, AIE active metal-organic framework and triphenylamine, not only in terms of their synthetic routes but also we outline their applications. Finally, we summarize our view of the construction and application of AIE-active molecules, which thus inspiring young researchers to explore new ideas, innovations, and develop the field of supramolecular chemistry in years to come.  相似文献   
438.
Industrial waste locks are used as raw materials to reduce harmful effects on the environment and improve environmental performance. Marble clay powder can be used as a filling aid and can fill voids in concrete structures. This article will show you how to use a maximum natural sand alternative in concrete with marble powder and quarry dust. The challenge of the 21st century is to change to a new form that can support the natural system. This necessitates a radical rethinking of how to give the community infrastructure and housing. Making a concerted effort to develop novel, innovative, and alternative construction materials may be necessary. Jungles of concrete around cause's impact on the Environment and it would result in climate change. Mankind must avoid the use of things that are detrimental to the environment. So in this paper, it is decided to address the issue by adopting the use of the green concrete concept which is environmentally friendly. Green concrete is concrete made up using industrial wastes such as marble powder, quarry dust, wood ash, paper pulp, etc. Green concrete, which is capable of sustainable development, helps to reduce the consumption of natural resources, energy use, and environmental pollution. Green concrete is more cost-effective than ordinary concrete and reduces the cost of resultant concrete by 14%–20%. It is also observed that the alkali-aggregate reaction and sulfate attack resistance of concrete are both significantly improved. Green concrete is a useful tool for lowering environmental pollution and enhancing concrete's resistance to harsh conditions. All stages of infrastructure construction and rehabilitation will follow this trend of using new cement and techniques. Green concrete's adaptability and its performance derivatives will meet a variety of future needs.  相似文献   
439.
Bioelectrocatalytic synthesis is the conversion of electrical energy into value-added products using biocatalysts. These methods merge the specificity and selectivity of biocatalysis and energy-related electrocatalysis to address challenges in the sustainable synthesis of pharmaceuticals, commodity chemicals, fuels, feedstocks and fertilizers. However, the specialized experimental setups and domain knowledge for bioelectrocatalysis pose a significant barrier to adoption. This review introduces key concepts of bioelectrosynthetic systems. We provide a tutorial on the methods of biocatalyst utilization, the setup of bioelectrosynthetic cells, and the analytical methods for assessing bioelectrocatalysts. Key applications of bioelectrosynthesis in ammonia production and small-molecule synthesis are outlined for both enzymatic and microbial systems. This review serves as a necessary introduction and resource for the non-specialist interested in bioelectrosynthetic research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号