首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
化学   10篇
数学   1篇
物理学   6篇
  2015年   1篇
  2009年   1篇
  2007年   1篇
  2003年   3篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1993年   3篇
  1992年   2篇
  1990年   2篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
11.
12.
Three-dimensional plots of instrumental responses vs. chemical concentrations or flow parameters have been 1 obtained in an automated manner on a computer-controlled flow-injection methods development system. Consideration of several alternative responses for flow-injection systems is shown to help characterize a chemistry more thoroughly and reveal the best experimental conditions. One may see the effects of individual experimental variables (reagent concentrations, pH, flow-rates, etc.), the interactions of these variables, instrumental factors and limitations of the surface exploration procedure employed. Chemical systems studied were the photometric determination of phosphate, palladium(II), iron(II) and persulfate. The propriety of automated response surface mapping is demonstrated and the efficacies of simplex and grid search approaches to response surface exploration are contrasted. Responses obtained include absorbance at peak maximum, relative standard deviation of maximum absorbance, time from injection to peak maximum and wavelength of maximum absorbance. Higher dimensional response surface representations of peak shape and absorbance spectra are also presented. The results show that the response chosen governs the general shape of the surface and the height at any point. This approach to automated characterization of chemical reactions in flow analysis is critically assessed.  相似文献   
13.
Shiundu PM  Wentzell PD  Wade AP 《Talanta》1990,37(3):329-336
Sulfochlorophenolazorhodanine (as its sodium salt) has been used in the automated development of a sensitive flow-injection procedure for the spectrophotometric determination of palladium. The resulting method has high sample throughput, good precision, and low consumption of both sample and reagents. The optimum pH for the reaction is 5.0 and the response is constant at pH between 4.7 and 5.3. The sensitivity (calibration slope) of the procedure is 4.4 x 10(3) l./mole. The linear dynamic range is 0.045-30.0 mug/ml. The sample throughput is at least 120/hr. An automated procedure for optimization of analytical variables is described and a two-variable response surface for the system is given. Interference studies on 19 metal ions show that the method has good selectivity.  相似文献   
14.
Until quite recently, theories on thermophoresis of particles predicted very low thermophoretic velocities of metal particles in liquids. This prediction was based on the understanding that the very high thermal conductivities of metals relative to most liquid media resulted in quite low temperature gradients across the metal particle thereby leading to low net force on the particle. In this paper, we report the retention behavior of submicrometer size metal particles of silver (Ag), gold (Au), palladium (Pd) and platinum (Pt) suspended in both aqueous and organic (specifically, acetonitrile and tetrahydrofuran) carrier liquids in thermal field-flow fractionation (ThFFF). The dependence of the metal particle retention on various factors such as particle composition, amount of added electrolyte, carrier liquid composition, field strength, channel thickness, and carrier flow-rate is evaluated and discussed. A comparison in particle retention behavior among equal-sized metal, latex and silica particles is also provided.  相似文献   
15.
Kester MD  Shiundu PM  Wade AP 《Talanta》1992,39(3):299-312
A manual colorimetric method for determination of sulfide has been adapted to flow injection, systematically optimized, and more fully characterized. Its intended application is for measurement of sodium sulfide reagent strength in pulp process streams, and sulfide contamination in effluent from Kraft pulp mills. In the flow-injection method developed, a sample solution containing sulfide is reacted with a mixture of iron(III) and nitrilotriacetic acid under ammoniacal conditions. The absorbance of the intensely-colored green product of this reaction is measured at 636 nm. Excess sulfite is present as a color stabilizer. A linear dynamic range of 20-100 ppm sulfide is readily achieved; the relative standard deviation is less than 1.2% (n = 10) throughout this range, and 0.37% (n = 10) midrange at 60 ppm. The usable dynamic range is 8-250 ppm sulfide. Long-term stability of the method is ensured by periodically performing an automatic cleaning cycle using a hydrochloric acid wash solution. This prevents tube discoloration and removes any precipitates which are formed under strongly alkaline conditions. The sample throuhput rate is at least 30/hr, given alternate acid wash cycles.  相似文献   
16.
In this paper we provide experimental evidence showing that various types of submicrometer-sized particles (latexes, inorganic, and metallic), suspended in either aqueous or nonaqueous carrier liquids to which a temperature gradient dT/dx is applied, experience a force in the direction opposite to that of dT/dx. This behavior is similar to that of small particles such as soot, aerosols, and small bubbles suspended in stagnant gases across which temperature gradients are applied, a phenomenon known as "thermophoresis in gases." We report the use of a thermal field-flow fractionation (ThFFF) apparatus in two different configurations to establish the direction of particle motion subject to a temperature gradient. The first approach employed the conventional horizontal ThFFF channel orientation. In this case, small electrical potentials were applied across the narrow channel thickness either to augment or to act in opposition to the applied thermal gradient, depending on whether the accumulation wall was maintained at a positive or negative potential relative to the depletion wall. Thus, by observing the changes in the retention behavior of surface-charged latices or silica particles with changes in potential difference across the channel thickness, we were able to ascertain the direction of migration of the particles in the thermal gradient. The second approach involved the use of a ThFFF column oriented vertically in an implementation of a technique known as thermogravitational FFF. In this approach, the convective flow along the channel length (due to density gradients associated with the temperature gradient) couples with the thermal diffusion effect across the channel thickness to result in a combined particle retention mechanism. A retarded upward migration rate is indicative of accumulation of particles at the cold wall, while enhanced upward migration would indicate a hot-wall accumulation. From the results of our investigations, we conclude that submicrometer-sized particles suspended in either aqueous or nonaqueous carrier liquids and subjected to a temperature gradient migrate from the hot wall toward the cold wall of a ThFFF channel.  相似文献   
17.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号