首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   372篇
  免费   7篇
  国内免费   1篇
化学   369篇
力学   1篇
数学   2篇
物理学   8篇
  2023年   9篇
  2022年   9篇
  2021年   13篇
  2020年   21篇
  2019年   16篇
  2018年   4篇
  2017年   5篇
  2016年   8篇
  2015年   6篇
  2014年   8篇
  2013年   21篇
  2012年   16篇
  2011年   26篇
  2010年   12篇
  2009年   15篇
  2008年   30篇
  2007年   23篇
  2006年   35篇
  2005年   20篇
  2004年   18篇
  2003年   16篇
  2002年   6篇
  2001年   11篇
  2000年   6篇
  1999年   5篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1985年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1977年   2篇
  1975年   1篇
  1937年   1篇
排序方式: 共有380条查询结果,搜索用时 15 毫秒
1.
Simple yet robust techniques for detecting targets in infrared (IR) images are an important component of automatic target recognition (ATR) systems. In our previous works, we have developed IR target detection and tracking algorithms based on image correlation and intensity. In this paper, we discuss these algorithms, their performances and problems associated with them and then propose novel algorithms to alleviate these problems. Our proposed target detection and tracking algorithms are based on frequency domain correlation and Bayesian probabilistic techniques, respectively. The proposed algorithms are found to be suitable for real-time detection and tracking of static or moving targets, while accommodating for detrimental affects posed by the clutter and background noise. Finally, limitations of all these algorithms are discussed.  相似文献   
2.
Russian Journal of Organic Chemistry - A series of novel 1,2,4-triazole nonsteroidal anti-inflammatory drugs (NSAIDs) derived from etodolac were designed and synthesized. The synthesized compounds...  相似文献   
3.
The recently developed (L. Song, W. Wu, Q. Zhang, S. Shaik, J. Phys. Chem. A 2004, 108, 6017) valence bond method coupled with a polarized continuum model (VBPCM) has been applied to the identity SN2 reaction of halides in the gas phase and in aqueous solution. The barriers computed at the level of the breathing orbital VB method (P. C. Hiberty, J. P. Flament, E. Noizet, Chem. Phys. Lett. 1992, 189, 259), BOVB and VBPCM//BOVB, are comparable to CCSD(T) and CCSD(T)//PCM results and to experimentally derived barriers in solution (W. J. Albery, M. M. Kreevoy, Adv. Phys. Org. Chem. 1978, 16, 85). The reactivity parameters needed to apply the valence bond state correlation diagram (VBSCD) method (S. Shaik, J. Am. Chem. Soc. 1984, 106, 1227), were also determined by VB calculations. It has been shown that the reactivity parameters along with their semiempirical derivations provide a satisfactory qualitative and quantitative account of the barriers.  相似文献   
4.
Calculations show that the transition structure for the synchronous oxygen transfer by Compound I is a second order saddle point. The process is unlikely.  相似文献   
5.
The experimentally measured bimolecular reaction rate constant, k(2) , should in principle correlate with the theoretically calculated rate-limiting free energy barrier, ΔG(≠) , through the Eyring equation, but it fails quite often to do so due to the inability of current computational methods to account in a precise manner for all the factors contributing to ΔG(≠) . This is further aggravated by the exponential sensitivity of the Eyring equation to these factors. We have taken herein a pragmatic approach for C?H activation reactions of 1,4-cyclohexadiene with a variety of octahedral nonheme Fe(IV) O complexes. The approach consists of empirically determining two constants that would aid in predicting experimental k(2) values uniformly from theoretically calculated electronic energy (ΔE(≠) ) values. Shown in this study is the predictive power as well as insights into energy relationships in Fe(IV) O C?H activation reactions. We also find that the difference between ΔG(≠) and ΔE(≠) converges at slow reactions, in a manner suggestive of changes in the importance of the triplet spin state weight in the overall reaction.  相似文献   
6.
Electron momentum spectroscopy, scanning tunneling microscopy, and photoelectron spectroscopy provide unique information about electronic structure, but their interpretation has been controversial. This essay discusses a framework for interpretation. Although this interpretation is not new, we believe it is important to present this framework in light of recent publications. The key point is that these experiments provide information about how the electron distribution changes upon ionization, not how electrons behave in the pre‐ionized state. Therefore, these experiments do not lead to a “selection of the correct orbitals” in chemistry and do not overturn the well‐known conclusion that both delocalized molecular orbitals and localized molecular orbitals are useful for interpreting chemical structure and dynamics. The two types of orbitals can produce identical total molecular electron densities and therefore molecular properties. Different types of orbitals are useful for different purposes.  相似文献   
7.
The active site of HRP Compound I (Cpd I) is modeled using hybrid density functional theory (UB3LYP). The effects of neighboring amino acids and of environmental polarity are included. The low-lying states have porphyrin radical cationic species (Por(*)(+)). However, since the Por(*)(+) species is a very good electron acceptor, other species, which can be either the ligand or side chain amino acid residues, may participate in electron donation to the Por(*)(+) moiety, thereby making Cpd I behave like a chemical chameleon. Thus, this behavior that was noted before for Cpd I of P450 is apparently much more wide ranging than initially appreciated. Since chemical chameleonic behavior property was found to be expressed not only in the properties of Cpd I itself, but also in its reactivity, the roots of this phenomenon are generalized. A comparative discussion of Cpd I species follows for the enzymes HRP, CcP, APX, CAT (catalase), and P450.  相似文献   
8.
Density functional calculations were performed on the sulfoxidation reaction by a model compound I (Cpd I) of cytochrome P450. By contrast to previous alkane hydroxylation studies, which exhibit a dominant low-spin (LS) pathway, the sulfoxidation follows a dominant high-spin (HS) reaction. Thus, competing hydroxylation and sulfoxidation processes as observed for instance by Jones et al. (Volz, T. J.; Rock, D. A.; Jones, J. P. J. Am. Chem. Soc. 2002, 124, 9724) are the result of a two-state reactivity scenario, whereby the hydroxylation originates from the LS pathway and the sulfoxidation from the HS pathway. In this manner, two spin states of a single oxidant (Cpd I) can be disguised as two different oxidants. The calculations rule out the possibility that a second oxidant (the ferric peroxide, Cpd 0 species) interferes in the observed results of Jones et al.  相似文献   
9.
The versatility of multicomponent Biginelli’s reaction is exploited in the development of proline and cyclized cysteine tethered conjugates of monastrol, a kinesin Eg5 inhibitor. Ten new conjugates are synthesized focusing on structural replacement of the ester moiety (C-5 position) of the monastrol backbone with amino acid based amide moieties. On cytotoxic evaluation, conjugate 24 has shown promising in vitro cytotoxic activity against leukemia. Molecular docking studies revealed that the conjugates 19 and 24 exhibit better interaction at kinesin Eg5 receptor compared to monastrol. Moreover, computational calculations and predictions of important molecular properties suggest that these new amino acid based conjugates could be further improved to provide potential anticancer agents.  相似文献   
10.
This study directly compares the active species of heme enzymes, so-called Compound I (Cpd I), across the heme-thiolate enzyme family. Thus, sixty-four different Cpd I structures are calculated by hybrid quantum mechanical/molecular mechanical (QM/MM) methods using four different cysteine-ligated heme enzymes (P450(cam), the mutant P450(cam)-L358P, CPO and NOS) with varying QM region sizes in two multiplicities each. The overall result is that these Cpd I species are similar to each other with regard to many characteristic features. Hence, using the more stable CPO Cpd I as a model for P450 Cpd I in experiments should be a reasonable approach. However, systematic differences were also observed, and it is shown that NOS stands out in most comparisons. By analyzing the electrical field generated by the enzyme on the QM region, one can see that (a) the protein exerts a large influence and modifies all the Cpd I species compared with the gas-phase situation and (b) in NOS this field is approximately planar to the heme plane, whereas it is approximately perpendicular in the other enzymes, explaining the deviating results on NOS. The calculations on the P450(cam) mutant L358P show that the effects of removing the hydrogen bond between the heme sulfur and L358 are small at the Cpd I stage. Finally, Mossbauer parameters are calculated for the different Cpd I species, enabling future comparisons with experiments. These results are discussed in the broader context of recent findings of Cpd I species that exhibit large variations in the electronic structure due to the presence of the substrate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号