首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1619篇
  免费   112篇
  国内免费   31篇
化学   1198篇
晶体学   8篇
力学   79篇
数学   209篇
物理学   268篇
  2024年   2篇
  2023年   8篇
  2022年   42篇
  2021年   73篇
  2020年   107篇
  2019年   97篇
  2018年   125篇
  2017年   98篇
  2016年   144篇
  2015年   95篇
  2014年   109篇
  2013年   195篇
  2012年   156篇
  2011年   126篇
  2010年   94篇
  2009年   60篇
  2008年   50篇
  2007年   49篇
  2006年   30篇
  2005年   13篇
  2004年   18篇
  2003年   15篇
  2002年   3篇
  2001年   5篇
  2000年   6篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1986年   2篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1975年   4篇
  1972年   2篇
排序方式: 共有1762条查询结果,搜索用时 31 毫秒
51.
52.
The influence of the thickness of CdTe/n-Ge heterojunction photodetectors on IV curves was studied experimentally and theoretically. The thicknesses of the CdTe thin films were 110, 130, 150, and 200 nm. The power intensity of illumination was 150 mW/cm2. Increasing the thickness led to an increase in photocurrent.  相似文献   
53.
The polydimethylsiloxane (PDMS) mixed matrix membrane with dispersed phase of nanozeolite silicalite-1 has been synthesized on polyethersulphone (PES) as a support, and its performance in the gas separation of xenon and krypton has been studied. For this purpose, nanozeolite silicalite-1 is synthesized by the hydrothermal clear solution method and is characterized by XRD and SEM analysis. In this research, the separation performance of MMM has also been compared with the polymeric PDMS membrane. Furthermore, the effect of feed pressure and loading percentage of nanozeolite in the polymeric matrix are evaluated. The results indicate that the addition of nanozeolite to the polymeric matrix improves its separation performance, and that the changes of the feed pressure have no major effect. The average permeability of the krypton and xenon gases through the PDMS polymeric membrane is calculated as 1.25 × 10?9 and 1.78 × 10?9 cm mol/(cm2 s kPa), respectively, while by adding only 5 wt% of nanosilicalite-1 to the polymeric matrix of the membrane, this amount increased to 1.82 × 10?9 and 8.07 × 10?9 cm mol/(cm2 s kPa), respectively. In addition, the presence of nanosilicalite-1 as the filler leads to an increase in the selectivity of xenon to krypton up to 4.38.  相似文献   
54.
Abstract

The oxidation of thiocyanate to polythiocyanic acid by peroxydisulfate was carried out in an aqueous solution at room temperature. The primary step is the decomposition of peroxydisulfate into sulfate-free radicals. At room temperature in the presence of peroxydisulfate as a oxidizing agent, HSCN polymerizes to (HSCN)n. The oxidation of thiocyanate in an aqueous solution is often complicated, but here we obtained the polythiocyanic acid as a major product. The products were characterized by elemental analysis, IR, UV- visible, H-NMR spectroscopy, and X-ray powder diffraction.  相似文献   
55.
Abstract

Various 3,4-dihydropyrimidin-2-(1H)-ones (DHPMs) and their sulfur derivatives were efficiently synthesized by a one-pot cyclocondensation reaction of aromatic and aliphatic aldehydes, β-dicarbonyl compounds and urea (or thiourea) in the presence of sulfuric acid immobilized on activated charcoal (133% w/w). The reactions were carried out in refluxing n-hexane-acetonitrile (2.5:0.5 mL) within 5–150 min to give 3,4-dihydropyrimidinones (or thiones) in high to excellent yields (81–97%).  相似文献   
56.
A spatially intermittent polymerization (SIP) reactor has been used for determination of absolute rate constants in photo-initiated, free-radical polymerization of styrene (STY) and methyl methacrylate (MMA). Experimental data are reported in the temperature range 15-30°C and in the high molecular weight region for MMA and STY. Additional experimental data are reported at 30° C and various lower molecular weights for STY which indicate that the propagation rate constant K is independent of polymer molecular weight, and K is dependent on molecular weight, especially at low molecular weight, approaching an approximately constant value at high molecular weight.  相似文献   
57.
Two new symmetrical diamines were designed and synthesized having different functional groups such as a pair of phenyl ether linkages, 2,3-diaryl substituted imidazole rings and CF3 groups as pendant, and characterized by FT-IR, 1H and 13C-NMR spectroscopy and elemental analysis. A series of new fluorescent poly(imide-ether)s (PIEs) was prepared by polymerization of the diamines with commercial tetracarboxylic dianhydrides such as pyromellitic dianhydride and 3,3′,4,4′-benzophenone tetracarboxylic dianhydride. The resulting PIEs were amorphous and had intrinsic viscosity [η] in the range of 0.42–0.51 dL/g. The weight average molecular weights (Mw) of these polymers were measured by GPC and were in the range of 28658–35595 g/mol with molecular weight distribution (MWD) of 2.12–2.27. These polymers were readily soluble in a variety of organic solvents and formed low-colored and flexible thin films with cut-off wavelength (λ0) in the range of 385–420 nm, and all PIEs films exhibited high optical transparency. They also possessed good thermal stability with 10% weight loss temperatures (T10%) in the range 486–537°C in N2. The glass transition temperatures (Tg) of PIEs are in the range 251–324°C. These polymers showed fluorescence emission in film and in solution at 459–476 nm with the quantum yields in the range 4–12%.  相似文献   
58.
A novel general method is introduced to predict deflagration temperature of organic energetic compounds containing at least –NNO2, –ONO2, or –CNO2 groups. Deflagration temperature is an important safety parameter in working with dangerous energetic compounds and their environmental problems. It is shown that the contribution of some molecular structure parameters can be used to interpret thermal decomposition of an energetic compound. For 86 energetic materials (corresponding to 102 measured values) with different molecular structures, the new correlation has the root mean square (rms) and the average deviations of 23.8 and 19.0 K, respectively. The new method is also tested for some energetic compounds with complex molecular structures, e.g., two new organic energetic molecules N,N′-bis(1,2,4-triazol-3yl)-4,4′-diamino-2,2′,3,3′,5,5′,6,6′-octanitroazobenzene (BTDAONAB) and 2,4,6-trinitrophloroglucinol.  相似文献   
59.
Nanocomposite membranes based on polyelectrolyte complex (PEC) of chitosan/phosphotungstic acid (PWA) and different types of montmorillonite (MMT) were prepared as alternative membranes to Nafion for direct methanol fuel cell (DMFC) applications. Fourier transform infrared spectroscopy (FTIR) revealed an electrostatically fixed PWA within the PEC membranes, which avoids a decrease in proton conductivity at practical condition. Various amounts of pristine as well as organically modified MMT (OMMT) (MMT: Cloisite Na, OMMT: Cloisite 15A, and Cloisite 30B) were introduced to the PEC membranes to decrease in methanol permeability and, thus, enhance efficiency and power density of the cells. X-ray diffraction patterns of the nanocomposite membranes proved that MMT (or OMMT) layers were exfoliated in the membranes at loading weights of lower than 3 wt.%. Moreover, the proton conductivity and the methanol permeability as well as the water uptake behavior of the manufactured nanocomposite membranes were studied. According to the selectivity parameter, ratio of proton conductivity to methanol permeability, the PEC/2 wt.% MMT 30B was identified as the optimum composition. The DMFC performance tests were carried out at 70 °C and 5 M methanol feed and the optimum membrane showed higher maximum power density as well as acceptable durability compared to Nafion 117. The obtained results indicated that owing to the relatively high selectivity and power density, the optimum nanocomposite membrane could be considered as a promising polyelectrolyte membrane (PEM) for DMFC applications.  相似文献   
60.
The aim of this work was to prepare lactose imprinted polymer and study of its selectivity for the recognition of different mono- and disaccharides. A series of molecularly imprinted polymers (MIPs) against lactose were synthesized and their binding properties were compared with a Blank non-imprinted polymer. Methacrylamide (MAAM) and ethylene glycol dimethacrylate were used as functional monomer and cross-linker, respectively. Dimethylsulfoxide was also applied as polymerization solvent. Different lactose:MAAM ratios were applied and optimized MIP was selected in a conventional batch adsorption study. The dissociation constant and maximum binding sites of polymer were determined using the Scatchard analysis. The selectivity of MIP for different mono- and disaccharides was also evaluated. The results indicated that the shape of cavity and orientation of functional monomers in binding sites and the spatial arrangement of hydroxyl groups in saccharide structure were responsible for the selectivity of lactose imprinted polymer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号