首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   849篇
  免费   14篇
  国内免费   3篇
化学   470篇
晶体学   3篇
力学   9篇
数学   132篇
物理学   252篇
  2021年   9篇
  2018年   7篇
  2017年   5篇
  2016年   9篇
  2015年   12篇
  2014年   14篇
  2013年   44篇
  2012年   27篇
  2011年   53篇
  2010年   29篇
  2009年   17篇
  2008年   35篇
  2007年   37篇
  2006年   42篇
  2005年   34篇
  2004年   30篇
  2003年   22篇
  2002年   22篇
  2001年   16篇
  2000年   16篇
  1999年   8篇
  1997年   7篇
  1996年   16篇
  1995年   9篇
  1994年   16篇
  1993年   15篇
  1992年   17篇
  1991年   11篇
  1990年   8篇
  1989年   8篇
  1988年   10篇
  1987年   10篇
  1986年   15篇
  1985年   22篇
  1984年   10篇
  1983年   11篇
  1982年   5篇
  1981年   14篇
  1980年   17篇
  1979年   11篇
  1978年   15篇
  1977年   20篇
  1976年   11篇
  1975年   18篇
  1974年   6篇
  1973年   10篇
  1972年   7篇
  1970年   5篇
  1968年   5篇
  1966年   5篇
排序方式: 共有866条查询结果,搜索用时 31 毫秒
851.
852.
The catalytic site of the homotrimeric enzyme human purine nucleoside phosphorylase enzyme (hPNP) features residue F200 and the 241-265 loop directly skirting the purine base and a residue belonging to the adjacent monomer, F159, immediately conterminous to the ribosyl moiety. Crystallographic B-factors of apo human purine nucleoside phosphorylase, and hPNP complexed with substrate/transition state (TS) analogues, show that residue E250 is the centroid of a highly mobile loop region. Furthermore, superimposition of apo hPNP and hPNP complexed with TS analogue Immucillin-H shows a tightening of the active site, caused by the ligand-dependent 241-265 loop rearrangement taking place upon substrate/inhibitor binding, suggesting a putative dynamic role of the loop in binding/catalysis. However, crystallographic structures reveal only average atomic positions, and more detailed information is needed to discern the dynamic behavior of hPNP. The Essential Dynamics (ED) method is used here to investigate the existence of correlated motions in hPNP and consequently proposes mutagenesis assays to estimate the relative importance of these motions in the phosphorolytic efficiency of the reaction catalyzed by hPNP. We compare the concerted motions obtained from multiple molecular dynamics simulations of apo and Michaelis complex of hPNP both in vacuo and in solution. The results of the principal component analysis for the apo hPNP indicate the existence of strong correlations predominantly in the vicinity of residue F159. However, for the Michaelis complex, concerted motions are seen mostly around both active site residue F200 and loop residue E250. Additionally, for a simulation depicting the relaxation of tight complexed hPNP with a TS analogue, toward its relaxed apo form (after removal of the TS analog), a combination of the apo hPNP and Michaelis complex motions is found, with prominent concerted modes centered around neighboring residues F159, F200, and E250. Finally, we probed the extent to which these concerted motions bear an intrinsic catalytic role by performing experimental site-directed mutagenesis on some residues, followed by kinetic analysis. The F159G and F200G mutants displayed a strong increase in K(M) and modest decrease in k(cat), suggesting that these concerted motions may provide dynamical roles in substrate binding and/or catalysis. However, further structural data for the hPNP mutants are needed to confirm our hypothesis.  相似文献   
853.
Static and time-resolved optical measurements are reported for two cyclic hexameric porphyrin arrays and their self-assembled complexes with guest chromophores. The hexameric hosts contain zinc porphyrins and 0 or 3 free base (Fb) porphyrins (denoted Zn(6) or Zn(3)Fb(3), respectively). The guests are a tripyridyl arene (TP) and a dipyridyl-substituted free base porphyrin (DPFb), each of which coordinates to zinc porphyrins of a host via pyridyl-zinc dative bonding. Each architecture is designed to have an overall gradient of excited-state energies that affords excitation funneling within the host and ultimately to the guest. Collectively, the studies delineate the various pathways, mechanisms, and rate constants of energy flow among the weakly coupled constituents of the host-guest complexes. The pathways include downhill unidirectional energy transfer between adjacent chromophores, bidirectional energy migration between identical chromophores, and energy transfer between nonadjacent chromophores. The energy transfer to the lowest-energy chromophore(s) within the backbone of a hexameric host (Fb porphyrins in Zn(3)Fb(3) or pyridyl-coordinated zinc porphyrins in Zn(6)*TP and Zn(6)*DPFb) proceeds primarily via a through-bond mechanism; the transfer is rapid (approximately 40 ps depending on the array) and essentially quantitative (>or=98%). The energy transfer from a pyridyl-coordinated zinc porphyrin of the host to the Fb porphyrin guest in the Zn(6)*DPFb complex is almost exclusively F?rster through-space in nature; this process is much slower ( approximately 1 ns) and has a lower yield (65%). These studies highlight the utility of cyclic architectures for efficient light harvesting and energy transfer to a designated trapping site.  相似文献   
854.
The hydrated electron is a unique solvent-supported state comprised of an excess electron that is confined to a cavity by the surrounding water. Theoretical studies have suggested that two-electron solvent-supported states also can be formed; in particular, simulations indicate that two excess electrons could pair up and occupy a single cavity, forming a so-called hydrated dielectron. Although hydrated dielectrons have not been observed directly by experiment, their existence has been posited to explain the lack of an ionic strength effect in hydrated electron bimolecular annihilation [Schmidt, K. H.; Bartels, D. M. Chem. Phys. 1995, 190, 145]. To determine whether dielectrons may be created in the laboratory, we use thermodynamic integration (TI), combined with mixed quantum/classical molecular dynamics simulation, to examine the thermodynamic stability of hydrated electrons and dielectrons. For the dielectron calculations, we solve the two-electron quantum problem using full configuration interaction. Our results suggest that hydrated dielectrons are thermodynamically unstable relative to separated (single) hydrated electrons, although we also show that increasing the pressure could drive the equilibrium toward the formation of dielectrons. Because the simulations suggest that hydrated dielectrons are kinetically stable, we also examine a scenario for creating metstable, nonequilibrium populations of dielectrons, which involves the capture of a newly injected electron by a preexisting, equilibrated hydrated electron. These calculations, which allow for the full nonadiabatic relaxation of the injected electron, show that hydrated electrons may indeed act as trapping sites for unequilibrated electrons, so that capture may be a viable mechanism for creating dielectrons. We suggest possible experimental procedures to create such nonequilibrium hydrated dielectrons using either pulse radiolysis or ultrafast spectroscopic techniques.  相似文献   
855.
Motivated by recent ultrafast spectroscopic experiments [Martini et al., Science 293, 462 (2001)], which suggest that photoexcited solvated electrons in tetrahydrofuran (THF) can relocalize (that is, return to equilibrium in solvent cavities far from where they started), we performed a series of nonequilibrium, nonadiabatic, mixed quantum/classical molecular dynamics simulations that mimic one-photon excitation of the THF-solvated electron. We find that as photoexcited THF-solvated electrons relax to their ground states either by continuous mixing from the excited state or via nonadiabatic transitions, approximately 30% of them relocalize into cavities that can be over 1 nm away from where they originated, in close agreement with the experiments. A detailed investigation shows that the ability of excited THF-solvated electrons to undergo photoinduced relocalization stems from the existence of preexisting cavity traps that are an intrinsic part of the structure of liquid THF. This explains why solvated electrons can undergo photoinduced relocalization in solvents like THF but not in solvents like water, which lack the preexisting traps necessary to stabilize the excited electron in other places in the fluid. We also find that even when they do not ultimately relocalize, photoexcited solvated electrons in THF temporarily visit other sites in the fluid, explaining why the photoexcitation of THF-solvated electrons is so efficient at promoting recombination with nearby scavengers. Overall, our study shows that the defining characteristic of a liquid that permits the photoassisted relocalization of solvated electrons is the existence of nascent cavities that are attractive to an excess electron; we propose that other such liquids can be found from classical computer simulations or neutron diffraction experiments.  相似文献   
856.
The first model of the iron hydrogenase active site has been prepared which concomitantly carries a proton and a hydride; the title species was characterized by IR and NMR spectroscopy and is reduced at more positive potential than any other mimic of this kind.  相似文献   
857.
858.
We present a new efficient method for computing the permanent and Hafnian of certain banded Toeplitz matrices. The method covers non-trivial cases for which previous known methods do not apply. The main idea is to use the elements of the first row and column, which determine the entire Toeplitz matrix, to construct a digraph in which certain paths correspond to permutations that the permanent and Hafnian count. Since counting paths can be done efficiently, the permanent and Hafnian for those matrices is easily obtainable.  相似文献   
859.
Whistler wave trains are observed in the foot region of high Mach number quasiperpendicular shocks. The waves are oblique with respect to the ambient magnetic field as well as the shock normal. The Poynting flux of the waves is directed upstream in the shock normal frame starting from the ramp of the shock. This suggests that the waves are an integral part of the shock structure with the dispersive shock as the source of the waves. These observations lead to the conclusion that the shock ramp structure of supercritical high Mach number shocks is formed as a balance of dispersion and nonlinearity.  相似文献   
860.
Summary.  We report a new reductive fragmentation/aldol tandem reaction in a 1,4-diketone induced by samarium(II) iodide. Due to the particular stereoelectronic situation in the molecule, an alternative pathway was avoided despite the fact that it would have greatly reduced the strain in the tricyclic molecule. Received February 23, 2001. Accepted March 7, 2001  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号