首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2318篇
  免费   103篇
  国内免费   9篇
化学   1940篇
晶体学   12篇
力学   25篇
数学   221篇
物理学   232篇
  2023年   24篇
  2022年   24篇
  2021年   68篇
  2020年   48篇
  2019年   59篇
  2018年   40篇
  2017年   37篇
  2016年   81篇
  2015年   85篇
  2014年   82篇
  2013年   116篇
  2012年   150篇
  2011年   201篇
  2010年   119篇
  2009年   109篇
  2008年   152篇
  2007年   154篇
  2006年   115篇
  2005年   122篇
  2004年   101篇
  2003年   93篇
  2002年   76篇
  2001年   37篇
  2000年   20篇
  1999年   34篇
  1998年   17篇
  1997年   13篇
  1996年   23篇
  1995年   23篇
  1994年   21篇
  1993年   15篇
  1992年   11篇
  1991年   13篇
  1990年   19篇
  1989年   15篇
  1988年   10篇
  1987年   6篇
  1986年   5篇
  1985年   15篇
  1984年   9篇
  1983年   5篇
  1982年   12篇
  1980年   8篇
  1979年   12篇
  1978年   9篇
  1976年   4篇
  1975年   4篇
  1974年   3篇
  1970年   2篇
  1967年   2篇
排序方式: 共有2430条查询结果,搜索用时 15 毫秒
991.
992.
Sulfonated polyimide (SPI)/dihydroxynaphthalene (DHN) charge‐transfer (CT) complex hybrid films were investigated as possible alternative for polymer electrolyte membranes in polymer electrolyte fuel cells. SPI/DHN CT complex hybrid films include CT complexes, which might work as electronic conductors, and sulfonic acid units, which could work as proton conductors. Therefore, the origin of the conductivity of SPI/DHN complex hybrid films was evaluated by four‐probe impedance measurements in the through‐plane direction of the films. The obtained conductivity of the CT complex hybrid films increased with the increase of ion exchange capacity of the CT films and the decrease of CT complex concentration in the films. These results indicated that proton transfer dominantly occurred in the CT complex hybrid films. Proton conductivity of the CT complex hybrid films consisting of 2,6‐ or 1,5‐DHN showed the similar values, although the molecular geometries of the CT complex were different. The activation energy values for proton conductivity in the CT films were approximately the same as that of Nafion 212. Water uptake (WU) results were also conducted and suggest that CT complex formation could control the degree of WU of the films and prevent dissolution of SPI. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2991–2997  相似文献   
993.
Tularemia, also known as rabbit fever, is a highly infectious zoonotic disease caused by a non-motile and non-spore-forming Gram-negative coccoid rod bacterium, Francisella tularensis. It occurs naturally in lagomorphs (rabbits and hares), but many animals have been reported to be susceptible. Transmission to humans is mostly caused by inhalation of aerosolised bacteria, handling of infected animals, arthropod stings, and ingestion of contaminated foods and water. At present, pathogenic isolation, molecular detection, and serology are the most commonly used methods to confirm the diagnosis of tularemia. In this work, an electrochemical immunosensor for the detection of anti-F. tularensis antibodies was developed, consisting of gold-based self-assembled monolayers of a carboxylic-group-terminated bipodal alkanethiol that is covalently linked to a lipopolysaccharide (LPS) that can be found in the outer membrane of the bacteria F. tularensis. The presence of anti-F. tularensis antibodies was measured using horseradish peroxidase-labelled protein A (HRP-protein A) from Staphylococcus aureus, and the developed immunosensor gave a stable quantitative response to different anti-F. tularensis FB11 antibody concentrations after 30 min with a limit of detection of 15 ng/mL, RSD of 9 %, n?=?3. The developed immunosensor was tested with serum from animals infected with tularemia and was compared to the results obtained using ELISA showing an excellent degree of correlation.  相似文献   
994.
In this study, bimetallic/polymer films are synthesized from polyetherimide (PEI), palladium acetate and silver nitrate for a wide range of total metal amount (from 0 to 30 wt %) and different Ag to Pd molar ratios. Hybrid precursor films are first prepared from polymer/metal complex solutions and the metal nanoparticles are then generated within the PEI matrix by annealing the precursor film under specific conditions. Reference neat PEI films and monometallic films are prepared in the same conditions. Interestingly, formation of AgPd alloys directly within the polymer films is for the first time obtained from a very simple and environmentally friendly route. Based on X‐ray diffraction and transmission electron microscopy analyses, a nanostructuration mechanism is proposed. The interactions of hydrogen towards the nanocomposites are investigated and discussed as a function of the nanoparticle composition. The impact of the nanostructuration is also studied on H2, CO2, and He permeation properties. Significant improvement of barrier properties is achieved. The pertinent parameters of the gas transport are identified and modelled for each gas/composite system. Finally, from both morphological and gas transport analyses, it is concluded that in situ generation AgPd alloys with Pd to Ag ratio above 1 leads to very interesting and promising materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1211–1220  相似文献   
995.
996.
A template‐assisted polymer‐derived ceramic route is investigated for preparing a series of silicoboron carbonitride (Si/B/C/N) foams with a hierarchical pore size distribution and tailorable interconnected porosity. A boron‐modified polycarbosilazane was selected to impregnate monolithic silica and carbonaceous templates and form after pyrolysis and template removal Si/B/C/N foams. By changing the hard template nature and controlling the quantity of polymer to be impregnated, controlled micropore/macropore distributions with mesoscopic cell windows are generated. Specific surface areas from 29 to 239 m2 g?1 and porosities from 51 to 77 % are achieved. These foams combine a low density with a thermal insulation and a relatively good thermostructural stability. Their particular structure allowed the in situ growth of metal–organic frameworks (MOFs) directly within the open‐cell structure. MOFs offered a microporosity feature to the resulting Si/B/C/N@MOF composite foams that allowed increasing the specific surface area to provide CO2 uptake of 2.2 %.  相似文献   
997.
998.
Reactions of the tris(3,5‐dimethylpyrazolyl)methanide amido complexes [M′{C(3,5‐Me2pz)3}{N(SiMe3)2}] (M′=Mg ( 1 a ), Zn ( 1 b ), Cd ( 1 c ); 3,5‐Me2pz=3,5‐dimethylpyrazolyl) with two equivalents of the acidic Group 6 cyclopentadienyl (Cp) tricarbonyl hydrides [MCp(CO)3H] (M=Cr ( 2 a ), Mo ( 2 b )) gave different types of heterobimetallic complex. In each case, two reactions took place, namely the conversion of the tris(3,5‐dimethylpyrazolyl)methanide ligand (Tpmd*) into the ‐methane derivative (Tpm*) and the reaction of the acidic hydride M?H bond with the M′?N(SiMe3)2 moiety. The latter produces HN(SiMe3)2 as a byproduct. The Group 2 representatives [Mg(Tpm*){MCp(CO)3}2(thf)] ( 3 a / b ) form isocarbonyl bridges between the magnesium and chromium/molybdenum centres, whereas direct metal–metal bonds are formed in the case of the ions [Zn(Tpm*){MCp(CO)3}]+ ( 4 a / b ; [MCp(CO)3]? as the counteranion) and [Cd(Tpm*){MCp(CO)3}(thf)]+ ( 5 a / b ; [Cd{MCp(CO)3}3]? as the counteranion). Complexes 4 a and 5 a / b are the first complexes that contain Zn?Cr, Cd?Cr, and Cd?Mo bonds (bond lengths 251.6, 269.8, and 278.9 pm, respectively). Quantum chemical calculations on 4 a / b* (and also on 5 a / b* ) provide evidence for an interaction between the metal atoms.  相似文献   
999.
1000.
This article demonstrates the successful fabrication of thin‐film‐composite (TFC) membranes containing well‐defined soft‐hard‐soft triblock copolymers. Based on “hard” polyimide (PI) and “soft” polydimethylsiloxane (PDMS), these triblock copolymers (PDMS‐b‐PI‐b‐PDMS), were prepared via condensation polymerization, and end‐group allylic functionalization to prepare the polyimide component and subsequent “click” coupling with the soft azido functionalized PDMS component. The selective layer consisted of pure PDMS‐b‐PI‐b‐PDMS copolymers which were cast onto a precast crosslinked‐PDMS gutter layer which in turn was cast onto a porous polyacrylonitrile coated substrate. The TFC membranes' gas transport properties, primarily for the separation of carbon dioxide (CO2) from nitrogen (N2), were determined at 35 °C and at a feed pressure of 2 atm. The TFC membranes showed improvements in gas permselectivity with increasing PDMS weight fraction. These results demonstrate the ability for glassy, hard polymer components to be coated onto otherwise incompatible surfaces of highly permeable soft TFC substrates through covalent coupling. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3372–3382  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号