首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   216篇
  免费   3篇
化学   158篇
晶体学   2篇
力学   6篇
数学   9篇
物理学   44篇
  2024年   4篇
  2023年   4篇
  2022年   3篇
  2021年   10篇
  2020年   8篇
  2019年   7篇
  2018年   2篇
  2017年   2篇
  2016年   11篇
  2015年   6篇
  2014年   6篇
  2013年   17篇
  2012年   16篇
  2011年   18篇
  2010年   13篇
  2009年   2篇
  2008年   12篇
  2007年   12篇
  2006年   14篇
  2005年   10篇
  2004年   7篇
  2003年   3篇
  2002年   3篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1983年   2篇
  1981年   2篇
  1979年   1篇
  1978年   4篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1948年   1篇
  1943年   2篇
  1941年   1篇
排序方式: 共有219条查询结果,搜索用时 15 毫秒
211.
Ribose-5-phosphate isomerase B (RpiB), a crucial enzyme of pentose phosphate pathway, was proposed to be a potential drug target for visceral leishmaniasis. In this study, we have analyzed the biophysical properties of Leishmania donovani RpiB (LdRpiB) enzyme to gain insight into its unfolding pathway under various chemical and thermal denaturation conditions by using fluorescence and CD spectroscopy. LdRpiB inactivation precedes the structural transition at lower concentrations of both urea and guanidine hydrochloride (GdHCl). 8-Anilinonapthalene 1-sulfonic (ANS) binding experiments revealed the presence of molten globule intermediate at 1.5 M GdHCl and a nonnative intermediate state at 6-M urea concentration. Acrylamide quenching experiments further validated the above findings, as solvent accessibility of tryptophan residues increased with increase in GdHCl and urea concentration. The recombinant LdRpiB was completely unfolded at 6 M GdHCl, whereas the enzyme molecule was resistant to complete unfolding even at 8-M urea concentration. The GdHCl- and urea-mediated unfolding involves a three-state transition process. Thermal-induced denaturation revealed complete loss of enzyme activity at 65 °C with only 20 % secondary structure loss. The formation of the well-ordered β-sheet structures of amyloid fibrils was observed after 55 °C which increased linearly till 85 °C as detected by thioflavin T dye. This study depicts the stability of the enzyme in the presence of chemical and thermal denaturants and stability-activity relationship of the enzyme. The presence of the intermediate states may have major implications in the way the enzyme binds to its natural ligand under various conditions. Also, the present study provides insights into the properties of intermediate entities of this important enzyme.  相似文献   
212.
The 2‐amino‐2‐deoxy‐α‐D ‐glucopyranosyl moiety (ring I) of paromomycin was replaced by a 2,4‐diamino‐2,4‐dideoxy‐α‐D ‐glucopyranosyl, 2,4‐diamino‐2,4‐dideoxy‐α‐D ‐galactopyranosyl, 2‐amino‐2‐deoxy‐α‐D ‐galactopyranosyl, or 3,4,5‐trideoxy‐4‐aza‐α‐D ‐erythro‐heptoseptanosyl moiety to investigate the effect of the substituent at C(4′) on the interaction with ribosomal RNA. The triflate 6 was prepared from the key intermediate pentaazido 3′,6′‐dibenzyl ether 5 , and the hexosulose 10 was obtained by oxidation of 5 with DessMartin's periodinane. Stereoselective reduction of 10 with NaBH4 gave the alcohol 11 that was transformed into the triflate 12 . The epimeric hexaazides 7 and 13 were obtained by treating the triflates 6 and 12 , respectively, with tetrabutylammonium azide. Periodate cleavage of glycol 2 yielded the dialdehyde 24 that was reductively aminated with aniline and benzylamine to give the 3,4,5‐trideoxy‐4‐aza‐α‐D ‐erythro‐heptoseptanosides 25 and 26 , respectively. Standard azide reduction and debenzylation yielded 9 (2,4‐diamino‐2,4‐dideoxy‐α‐D ‐galactopyranosyl ring I), 13 (2‐amino‐2‐deoxy‐α‐D ‐galactopyranosyl ring I), 17 (2,4‐diamino‐2,4‐dideoxy‐α‐D ‐glucopyranosyl ring I), and 27 and 28 (3,4,5‐trideoxy‐4‐aza‐α‐D ‐erythro‐heptoseptanosyl ring I). The derivatives 9 and 13 possessing a D ‐galacto‐configured ring I were less active than the corresponding D ‐gluco‐analogues 17 and paromomycin ( 1 ), respectively. The C(4′)‐aminodeoxy derivative 17 (D ‐gluco ring I) and the known 4′‐deoxyparomomycin ( 23 ), prepared by a new route, displayed slightly lower antibacterial activities than paromomycin ( 1 ). Cell‐wall permeability is not responsible for the unexpectedly low activity for 17 , as shown by cell‐free translation assays. The results evidence that the orientation of the substituent at C(4′) is more important than its nature for drug binding and activity.  相似文献   
213.
214.
The corona discharge process was studied using Box–Behnken design of experiments in conjunction with response surface methodology of analysis. The single as well as interaction effects of process factors namely applied voltage, time of charging, and distance between electrodes on the surface potential of meltblown nonwoven electret media were examined. The response surface model predicting the surface potential of the electrets displayed a very good correspondence with the experimental results. The optimized corona discharge process run by keeping the predicted levels of process factors yielded surface potential of the electret media very close to that predicted from the model.  相似文献   
215.
The rapid development of communication technology and electronic industry has brought unprecedented serious electromagnetic interference (EMI) and electromagnetic wave (EMW) pollution. Although EMI shields and EMW absorbers based on metal or magnetic materials were used to solve these problems, they have long been criticized for their high price, high density and easy corrosion. In order to achieve low density and efficient dissipation of electromagnetic energy, aerogels stand out among manifold materials. However, constructing aerogels with good EMI shielding or EMW absorption performance and acceptable mechanical properties is not an easy task. Burgeoning biopolymers, such as cellulose, lignin, chitin/chitosan and alginate, breathe new life into aerogels for high-efficiency EMW shielding and absorbing. Here, we reviewed the contributions of biopolymers in the fields of aerogels for EMW shielding and absorbing. At the same time, some challenges and outlook were also pointed out, aiming to promote the advance of aerogel-based EMI shields and EMW absorbers as well as the rational utilization of biopolymers.  相似文献   
216.
The structural tropology and functions of natural cation-anion symporting channels have been continuously investigated due to their crucial role in regulating various physiological functions. To understand the physiological functions of the natural symporter channels, it is vital to develop small-molecule-based biomimicking systems that can provide mechanistic insights into the ion-binding sites and the ion-translocation pathways. Herein, we report a series of bis((R)-(−)-mandelic acid)-linked 3,5-diaminobenzoic acid based self-assembled ion channels with distinctive ion transport ability. Ion transport experiment across the lipid bilayer membrane revealed that compound 1 b exhibits the highest transport activity among the series, and it has interesting selective co-transporting functions, i.e., facilitates K+/ClO4 symport. Electrophysiology experiments confirmed the formation of supramolecular ion channels with an average diameter of 6.2±1 Å and single channel conductance of 57.3±1.9 pS. Selectivity studies of channel 1 b in a bilayer lipid membrane demonstrated a permeability ratio of , , and indicating the higher selectivity of the channel towards KClO4 over KCl salt. A hexameric assembly of a trimeric rosette of 1 b was subjected to molecular dynamics simulations with different salts to understand the supramolecular channel formation and ion selectivity pattern.  相似文献   
217.
In the present study, poly(N-Isopropylacrylacrylamide-co-N-tertiarybutylacrylamide-co-hydroxyethylcrylamide) (NIPAM-co-NTBA-co-HEAAm) hydrogels are prepared with variation of molar ratio of hydrophilic HEAAm and hydrophobic NTBA. The prepared hydrogels are characterized with elemental analysis and Fourier transform infrared (FTIR) spectroscopy. The thermodynamics of swelling properties of poly(NIPAM-co-NTBA-co-HEAAm) hydrogels have also been discussed. The experimental C/N ratios are comparable with the theoretical value. The enthalpy change of mixing ∆Hmix, entropy change of mixing ∆Smix, free energy change of mixing ∆Gmix are determined for swelling of hydrogels at 25 °C. The value of total free energy of hydrogel swelling is found to be negative which confirms the lower critical solution temperature (LCST) exhibited in all hydrogels and the volume change transition shows the thermoresponsive behavior. The values of ∆Smix increase and ∆Gmix decrease with increasing amount of hydrophobic NTBA content in the hydrogels. The values of free energy change of elasticity (∆Gel) are found to be increased with increasing the hydrophobic NTBA content followed by decrease in swelling percentage. Also, the transition temperature of the hydrogel is found to be decreased with increasing the hydrophobic NTBA.  相似文献   
218.
The random phase approximation is reformulated to investigate the anisotropic fluctuations about an ordered polymer phase. This very general method is applied to the lamellar phase of block copolymers. The calculated anisotropic scattering intensity captures the main features observed experimentally including the secondary peaks due to fluctuations with hexagonal symmetry. We also determined the limits of metastability of the lamellar phase as well as the bending and elastic moduli of the lamellae.  相似文献   
219.
We present an optochemical O2 scavenging system that enables precise spatiotemporal control of the level of hypoxia in living cells simply by adjusting the light intensity in the illuminated region. The system employs rhodamine containing a selenium or tellurium atom as an optochemical oxygen scavenger that rapidly consumes O2 by photochemical reaction with glutathione as a coreductant upon visible light irradiation (560–590 nm) and has a rapid response time, within a few minutes. The glutathione-consuming quantum yields of the system were calculated as about 5 %. The spatiotemporal O2 consuming in cultured cells was visualized with a hypoxia-responsive fluorescence probe, MAR. Phosphorescence lifetime imaging was applied to confirmed that different light intensities could generate different levels of hypoxia. To illustrate the potential utility of this system for hypoxia research, we show that it can spatiotemporally control calcium ion (Ca2+) influx into HEK293T cells expressing the hypoxia-responsive Ca2+ channel TRPA1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号