首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   0篇
化学   49篇
晶体学   3篇
物理学   6篇
  2021年   2篇
  2020年   1篇
  2016年   1篇
  2014年   1篇
  2013年   4篇
  2012年   8篇
  2011年   3篇
  2010年   2篇
  2009年   6篇
  2008年   4篇
  2006年   4篇
  2005年   1篇
  2004年   8篇
  2000年   1篇
  1997年   1篇
  1993年   1篇
  1984年   4篇
  1982年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
排序方式: 共有58条查询结果,搜索用时 200 毫秒
11.
The grafting kinetics of reactive poly(styrene‐co‐acrylonitrile) (SAN) onto EPR‐g‐MA was studied under isothermal conditions, at the planar interface of an SAN/ethylene‐propylene rubber (EPR) bilayer film in relation to the type of reactive groups, NH2 versus carbamate (which is an amine precursor), attached to SAN. The amount of SAN chemically bound to EPR chains at the interface was estimated by selectively washing off the unreacted SAN chains before X‐ray photon spectroscopic analysis of the released surface. It is clear that the mutual reactivity of the reactive groups, i.e., the NH2–MA pair versus the carbamate–MA pair, has a decisive effect on the amount of SAN that reacts with EPR‐g‐MA at the interface. In case of SAN‐carb, the grafting reaction is controlled by the thermolysis of the carbamate groups into primary amines. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3682–3689, 2000  相似文献   
12.
Eugenol is the main volatile compound extracted oil from clove bud, Syzygium aromaticum L., and used in traditional medicine, as a bactericide, fungicide, anesthetic, and others. Its extraction was performed using hydrodistillation which is the most common extraction technique. Its components and thermal behavior were evaluated using gas chromatography (GC) and differential scanning calorimetry (DSC), which provide a better characterization of these natural compounds. This extracted product was compared to the standard eugenol results. The GC results suggested ~90% eugenol was found in the total extracted oil, and some of its boiling characteristics were 270.1 °C for peak temperature and 244.1 J g−1 for the enthalpy variation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
13.
In this paper, we present simulations of the decay of quantum coherence between vibrational states of I(2) in its ground (X) electronic state embedded in a cryogenic Kr matrix. We employ a numerical method based on the semiclassical limit of the quantum Liouville equation, which allows the simulation of the evolution and decay of quantum vibrational coherence using classical trajectories and ensemble averaging. The vibrational level-dependent interaction of the I(2)(X) oscillator with the rare-gas environment is modeled using a recently developed method for constructing state-dependent many-body potentials for quantum vibrations in a many-body classical environment [J. M. Riga, E. Fredj, and C. C. Martens, J. Chem. Phys. 122, 174107 (2005)]. The vibrational dephasing rates gamma(0n) for coherences prepared between the ground vibrational state mid R:0 and excited vibrational state mid R:n are calculated as a function of n and lattice temperature T. Excellent agreement with recent experiments performed by Karavitis et al. [Phys. Chem. Chem. Phys. 7, 791 (2005)] is obtained.  相似文献   
14.
Novel dielectric behavior of a linear increase in ionic conductivity prior to melt temperature was observed for active pharmaceutical ingredients (APIs), organic chemicals, amino acids, and carbohydrates. Though, there are solids like polyolefins and long chain organic compounds (tetracosane, pentacosane) which do not exhibit this premelt behavior (i.e., the temperature where the onset of increase in ionic conductivity to melt temperature). We have discovered novel electrical conductivity properties and other physical analytical variations which can lead to unique synthetic routes of certain chemical entities. The above-mentioned unique variations are not related to solid–solid transitions which are quite often observed in pharmaceutical crystalline solids. These new properties are related to amorphous crystalline behavior of a solid. We have also studied the effect of various experimental variables: such as amount of mass tested, applied frequency at a given electric field and heating rate, which results in varying the onset temperature of the increase in ionic conductivity. Melting of the solids was correlated using differential scanning calorimetry (DSC). Activation energies for all the solids were measured in the premelt region using an Arrhenius plot at a specific frequency since we observed changes in the conductivity with frequency. This study focused on frequencies 0.1 to 10 Hz, since the conductivity at these frequencies related to surface analysis. This new physical properties are leading to new electro synthetic procedures to modify or prepare chemicals.  相似文献   
15.
Three aldohexose monosaccharides, d-glucose, d-mannose, and d-galactose, were examined by scanning temperature dielectric analysis (DEA) from ambient temperatures through their melts. Phase transitions, including glass transition (T g) and melting temperature (T m), were evaluated by differential scanning calorimetry (DSC). The monosaccharides were found to exhibit thermally-induced dielectric loss spectra in their amorphous-solid phase before melting. Activation energies for electrical charging of each of the monosaccharides were calculated from an Arrhenius plot of the tan delta (e″/e′, dielectric loss factor/relative permittivity) peak frequency versus reciprocal temperature in Kelvin. The DEA profiles were also correlated with the DSC phase diagrams, showing the changes in electrical behavior associated with solid–solid and solid–liquid transitions.  相似文献   
16.
A standard protocol was developed to determine the water content by thermal analysis of milk of magnesia (MoM). Differential scanning calorimetry (DSC) and thermogravimetry (TG) were used in a novel manner for examining the physical characteristics of the commercial pharmaceutical suspensions. Moisture analyzer and oven-dry methods validate the proposed protocol. MoM consists primarily of water and magnesium hydroxide [Mg(OH)2]. Experimental design of the thermal analysis parameters were considered including sample size, flowing atmosphere, sample pan, and heating rate for both DSC and TG. The results established the optimum conditions for minimizing heat and mass transfer effect. Sample sizes used were: (5?C15?mg) for DSC and (30?C50?mg) for TG. DSC analysis used crimped crucibles with a pinhole, which allowed maximum resolution and gave well-defined mass (water) loss. TG analysis used a heating rate of 10?°C/min?1 in an atmosphere of nitrogen. The heat of crystallization, heat of fusion, and heat of vaporization of unbound water are 334, 334, and 2,257?Jg?1, respectively (Mitra et al. Proc NATAS Annu Conf Therm Anal Appl 30:203?C208, 2002). The DSC average water content of (MoM) was 80?wt% for name brand and 89.5?wt% for generic brand, based on the relative crystallization, melting and vaporization heats/Jg?1 of distilled water in the recently purchased (2011) MoM samples. The TG showed a two-step process, losing water at 80?C135?°C for unbound water and bound water (MgO·H2O) at 376?C404?°C, yielding a total average water loss of 91.9?% for name brand and 90.7?% for generic brand by mass. The difference between the high-temperature TG and the lower-temperature DSC can be attributed for the decomposition of magnesium hydroxide or MgO·H2O. Therefore in performing this new approach to water analysis by heating to a high temperature decomposed the magnesium hydroxide residue. It was determined that the TG method was the most accurate for determining bound and unbound water.  相似文献   
17.
18.
High resolution X-ray photoelectron spectra are reported for tetraphenyldithiapyranylidene (DIPSσ4), three of its polyiodides, and its diperchlor allows to emphasize the evolution of the structure with iodine contents. The chemical nature of the iodine species is also inferred from the I3d52 signal shape. The low binding energy of the highest occupied molecular orbital is compared to that of other π-systems, and the Iteration of the electron delocalization is shown to be rel  相似文献   
19.
20.
This project investigated the interaction between poly-L-lactic acid (PLLA) and several therapeutic agents. Low percentage crystallinity PLLA (melt-pressed, molded and drawn) was studied. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) were used to characterize the crystallinity and thermal properties in a thermal cycling process. Repeatable melting and crystallization events were observed. The thermal properties of a drug-polymer combination using PLLA and an acidic, basic, neutral and zwitterionic material were investigated. A sufficient quantity of the drug must be present in the polymer to be observed thermally. Release of atropine sulfate from a PLLA tablet showed a two-phase process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号