首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   941篇
  免费   9篇
  国内免费   7篇
化学   556篇
晶体学   9篇
力学   33篇
数学   85篇
物理学   274篇
  2021年   13篇
  2020年   19篇
  2019年   10篇
  2018年   7篇
  2017年   7篇
  2016年   11篇
  2014年   7篇
  2013年   42篇
  2012年   33篇
  2011年   41篇
  2010年   17篇
  2009年   27篇
  2008年   36篇
  2007年   39篇
  2006年   41篇
  2005年   28篇
  2004年   29篇
  2003年   34篇
  2002年   19篇
  2001年   19篇
  2000年   34篇
  1999年   18篇
  1998年   19篇
  1997年   22篇
  1996年   15篇
  1995年   12篇
  1994年   12篇
  1993年   12篇
  1992年   15篇
  1991年   12篇
  1990年   12篇
  1989年   6篇
  1988年   11篇
  1987年   8篇
  1986年   20篇
  1985年   20篇
  1984年   13篇
  1983年   10篇
  1982年   12篇
  1981年   12篇
  1980年   10篇
  1979年   15篇
  1978年   6篇
  1977年   22篇
  1976年   9篇
  1975年   14篇
  1974年   9篇
  1973年   10篇
  1970年   5篇
  1917年   7篇
排序方式: 共有957条查询结果,搜索用时 15 毫秒
81.
82.
We report the development of an enhanced algorithm for the calculation of collision cross‐sections in combination with Travelling‐Wave ion mobility mass spectrometry technology and its optimisation and evaluation through the analysis of an organoruthenium anticancer complex [(η6‐biphenyl)RuII(en)Cl]+. Excellent agreement was obtained between the experimentally determined and theoretically determined collision cross‐sections of the complex and its major product ion formed via collision‐induced dissociation. Collision cross‐sections were also experimentally determined for adducts of this ruthenium complex with the single‐stranded oligonucleotide hexamer d(CACGTG). Ion mobility tandem mass spectrometry measurements have allowed the binding sites for ruthenium on the oligonucleotide to be determined. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
83.
A series of ABA amphiphilic triblock copolymers possessing polystyrene (PS) central hydrophobic blocks, one group with “short” PS blocks (DP = 54–86) and one with “long” PS blocks (DP = 183–204) were synthesized by atom transfer radical polymerization. The outer hydrophilic blocks were various lengths of poly(oligoethylene glycol methyl ether) methacrylate, a comb‐like polymer. The critical aggregation concentrations were recorded for certain block copolymer samples and were found to be in the range circa 10−9 mol L−1 for short PS blocks and circa 10−12 mol L−1 for long PS blocks. Dilute aqueous solutions were analyzed by transmission electron microscopy (TEM) and demonstrated that the short PS block copolymers formed spherical micelles and the long PS block copolymers formed predominantly spherical micelles with smaller proportions of cylindrical and Y‐branched cylindrical micelles. Dynamic light scattering analysis results agreed with the TEM observations demonstrating variations in micelle size with PS and POEGMA chain length: the hydrodynamic diameters (DH) of the shorter PS block copolymer micelles increased with increasing POEGMA block lengths while maintaining similar PS micellar core diameters (DC); in contrast the values of DH and DC for the longer PS block copolymer micelles decreased. Surface‐pressure isotherms were recorded for two of the samples and these indicated close packing of a short PS block copolymer at the air–water interface. The aggregate solutions were demonstrated to be stable over a 38‐day period with no change in aggregate size or noticeable precipitation. The cloud point temperatures of certain block copolymer aggregate solutions were measured and found to be in the range 76–93 °C; significantly these were ∼11 °C higher in temperature than those of POEGMA homopolymer samples with similar chain lengths. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7739–7756, 2008  相似文献   
84.
85.
86.
We consider the axisymmetric deformation of an initially spherical,porous vesicle with incompressible membrane having finite resistanceto in-plane shearing, as the vesicle is compressed between parallelplates. We adopt a thin-shell balance-of-forces formulationin which the mechanical properties of the membrane are describedby a single dimensionless parameter, C, which is the ratio ofthe membrane's resistance to shearing to its resistance to bending.This results in a novel free-boundary problem which we solvenumerically to obtain vesicle shapes as a function of plateseparation, h. For small deformations, the vesicle contactseach plate over a small circular area. At a critical value ofplate separation, hTC, there is a transcritical bifurcationfrom which a new branch of solutions emerges, representing buckledvesicles which contact each plate along a circular curve. Forthe values of C investigated, we find that the transcriticalbifurcation is subcritical and that there is a further saddle-nodebifurcation (fold) along the branch of buckled solutions ath = hSN (where hSN > hTC). The resulting bifurcation structureis commensurate with a hysteresis loop in which a sudden transitionfrom an unbuckled solution to a buckled one occurs as h is decreasedthrough hTC and a further sudden transition, this time froma buckled solution to an unbuckled one, occurs as h is increasedthrough hSN. We find that hSN and hTC increase with C, thatis, vesicles that resist shear are more prone to buckling.  相似文献   
87.
88.
89.
The injection moulding of thermoplastics involves, during mould filling, flows of hot polymer melts into mould networks, the walls of which are so cold that frozen layers form on them. An analytical study of such flows is presented here for the case when the Graetz number is small and the Nahme number is non-zero and can be large. Thus the flows are fully-developed and temperature differences due to heat generation by viscous dissipation are sufficiently large to cause significant variations in viscosity. Gz Graetz number - h half-height of channel or disc - h * half-height of polymer melt region in channel or disc - L length of channel or pipe - m viscosity shear-rate exponent - Na Q Nahme number based on flowrate - Na P Nahme number based on pressure drop - Na PL lower critical value of Nahme number based on pressure drop - Na PU upper critical value of Nahme number based on pressure drop - Na P Nahme number based on pressure gradient - p pressure - P pressure drop - Q volumetric flowrate - r radial coordinate in pipe or disc - R radius of pipe - Re Reynolds number - R i inner radius of disc - R 0 outer radius of disc - R * radius of polymer melt region in pipe - T temperature - T m melting temperature of polymer - T 0 reference temperature - T w wall temperature - u axial velocity in pipe or channel or radial velocity in disc - w width of channel - x axial coordinate in channel - y transverse coordinate in channel or disc - z axial coordinate in pipe - thermal conductivity of molten polymer - thermal conductivity of frozen polymer - heat capacity of molten polymer - viscosity temperature exponent - dimensionless transverse coordinate in channel or disc - * dimensionless half-height of polymer melt region in channel or disc - dimensionless temperature - * dimensionless wall temperature - µ viscosity of molten polymer - µ 0 consistency of molten polymer - dimensionless pressure drop - dimensionless pressure gradient - density of molten polymer - dimensionless radial coordinate in pipe or disc - i dimensionless inner radius of disc - * dimensionless radius of polymer melt region in pipe - dimensionless velocity  相似文献   
90.
The injection moulding of thermoplastics involves, during mould filling, flows of hot polymer melts into mould networks, the walls of which are so cold that frozen layers form on them. An analytical study of such flows is presented here for the case when the Graetz and Nahme numbers are large and the Pearson number is small. Thus the flows are developing and temperature differences due to heat generation by viscous dissipation are sufficiently large to cause significant variations in viscosity (but the difference between the entry temperature of the polymer to a specific part of the mould network and the melting temperature of the polymer is not). Br Brinkman number - Gz Graetz number - h half-height of channel or disc - h * half-height of polymer melt region in channel or disc - L length of channel or pipe - m viscosity shear-rate exponent - Na Nahme number - p pressure - P pressure drop - Pe Péclet number - Pn Pearson number - Q volumetric flowrate - r radial coordinate in pipe or disc - R radius of pipe - Re Reynolds number - R i inner radius of disc - R o outer radius of disc - R * radius of polymer melt region in pipe - T temperature - T ad adiabatic temperature rise - T e entry polymer melt temperature - T m melting temperature of polymer - T max maximum temperature - T 0 reference temperature - T w wall temperature - flow-average temperature rise - u r radial velocity in pipe or disc - u x axial velocity in channel - u y transverse velocity in channel or disc - u z axial velocity in pipe - w width of channel - x axial coordinate in channel or modified radial coordinate in disc - y transverse coordinate in channel or disc - z axial coordinate in pipe - thermal conductivity of molten polymer - thermal conductivity of frozen polymer - scaled dimensionless axial coordinate in channel or pipe or radial coordinate in disc - 0 undetermined integration constant - heat capacity of molten polymer - viscosity temperature exponent - dimensionless transverse coordinate in channel or disc - * dimensionless half-height of polymer melt region in channel or disc - H * scaled dimensionless half-height of polymer melt region in channel or disc or radius of polymer melt region in pipe - dimensionless temperature - * dimensionless wall temperature - scaled dimensionless temperature - numerical constant - µ viscosity of molten polymer - µ 0 consistency of molten polymer - dimensionless pressure gradient - scaled dimensionless pressure gradient - density of molten polymer - dimensionless radial coordinate in pipe or disc - i dimensionless inner radius of disc - * dimensionless radius of polymer melt region in pipe - dimensionless streamfunction - scaled dimensionless streamfunction - dummy variable - streamfunction - similarity variable - similarity variable  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号