首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   6篇
化学   111篇
晶体学   4篇
力学   1篇
数学   4篇
物理学   27篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   5篇
  2017年   5篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   4篇
  2012年   8篇
  2011年   8篇
  2010年   6篇
  2009年   6篇
  2008年   14篇
  2007年   8篇
  2006年   6篇
  2005年   7篇
  2004年   8篇
  2003年   4篇
  2002年   4篇
  2001年   5篇
  2000年   2篇
  1999年   3篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   2篇
  1973年   2篇
  1972年   1篇
  1970年   1篇
  1968年   1篇
  1960年   1篇
排序方式: 共有147条查询结果,搜索用时 15 毫秒
31.
Polymer electrolyte membranes are prepared from novel semi-interpenetrating polymer network material where the sulfonated poly (ether ether ketone) (SPEEK) is the linear polymer and the poly (ethylene glycol) diacrylate (PEGDA) is the cross-linking constituent. The semi-IPN is prepared by in situ polymerization of PEGDA in the presence of sulfonated poly (ether ether ketone). SPEEK is prepared by direct sulfonation of commercial PEEK (Gatone? 1100) by reported procedures. SPEEK with degree of sulfonation 63% (calculated from FT-NMR) is selected as the base membrane and different semi-IPN membranes were prepared by varying the PEGDA and SPEEK ratio. The degree of sulfonation of SPEEK and the formation of semi-IPN were confirmed by spectroscopy studies. The various semi-IPN membranes were characterized for ion-exchange capacity, water uptake, hydrolytic stability, proton conductivity and thermal stability for evaluating the suitability of these membranes for fuel cells. The proton conductivity of the membranes decreased with increasing PEGDA content. The Semi-IPN membranes exhibited conductivities (30°C) from 0.018 S/cm to 0.006 S/cm. These interpenetrating network membranes showed higher hydrolytic stability than the pure SPEEK membrane. This study shows that semi-IPN membranes based on PEGDA and SPEEK can be viable candidates for electrolyte membranes.  相似文献   
32.
In this Letter, a composite π/2 pulse sequence,  135, for the broadband excitation in overtone NMR spectroscopy of spin S=1 quadrupolar nuclei is proposed. The performances of single and composite π/2 pulses against resonance offset and rf field inhomogeneity are compared based on the results from 14N overtone experiments on a single crystal sample of N-acetyl-D,L-valine. The results reveal that the  135 composite π/2 pulse is less sensitive to the pulse imperfections and it will be useful in the design of multidimensional overtone NMR experiments.  相似文献   
33.
In contrast to the well‐known reaction of phosphonic acids RP(O)(OH)2 with divalent transition‐metal ions that yields layered metal phosphonates [RPO3M(H2O)]n, the 2,6‐diisopropylphenyl ester of phosphoric acid, dippH2, reacts with zinc acetate in methanol under ambient conditions to afford tetrameric zinc phosphate [(ArO)PO3Zn(MeOH)]4 ( 1 ). The coordinated methanol in 1 can be readily exchanged by stronger Lewis basic ligands at room temperature. This strategy opens up a new avenue for building double‐four‐ring (D4R) cubane‐based supramolecular assemblies through strong intercubane hydrogen‐bonding interactions. Seventeen pyridinic ligands have been used to synthesize as many D4R cubanes [(ArO)PO3Zn(L)]4 ( 2 – 18 ) from 1 . The ligands have been chosen in such a way that the majority of them contain an additional functional group that could be used for noncovalent synthesis of extended structures. When the ligand does not contain any other hydrogen‐bonding donor–acceptor sites (e.g., 2,4,6‐trimethylpyridine (collidine)), zero‐dimensional D4R cubanes have been obtained. The use of pyridine, lutidine, 2‐aminopyridine, and 2,6‐diaminopyridine, however, results in the formation of linear or zigzag one‐dimensional assemblies of D4R cubanes through strong intermolecular C? H???O or N? H???O interactions. Construction of two‐dimensional assemblies of zinc phosphates has been achieved by employing 2‐hydroxypyridine or 2‐methylimidazole as the exo‐cubane ligand on zinc centers. The introduction of an alcohol side chain on the pyridinic ligand in such a way that the ? CH2OH group cannot participate in intracubane hydrogen bonding (e.g., pyridine‐3‐methanol, pyridine‐4‐methanol, and 3,5‐dimethylpyrazole‐N‐ethanol) leads to the facile noncovalent synthesis of three‐dimensional framework structures. Apart from being useful as building blocks for noncovalent synthesis of zeolite‐like materials, compounds 1 – 18 can also be thermolyzed at approximately 500 °C to yield high‐purity zinc pyrophosphate (Zn2P2O7) ceramic material.  相似文献   
34.
35.
ZnAl2O4 is a well‐known wide band gap compound semiconductor (Eg=3.8eV), ceramic, opto‐mechanical, anti‐thermal coating in aero‐space vehicles and UV optoelectronic devices. A novel method for the growth of single crystals of a ternary oxide material was developed as a fruit of a long term work. Material to be grown as metal incorporated single crystal was taken as precursor and put into a bath containing acid as reaction speed up reagent (catalyst) as well as solvent with a metal foil as cation scavenger. Using this method, ZnAl2O4 crystals having hexagonal facets are prepared from a single optimized bath. Structural and compositional properties of crystals were studied using Philips, Xpert ‐ MPD: X‐ray diffractometer and Philips, ESEM‐TMP + EDAX. Thus technique was found to be a new low cost and advantageous method for growth of single crystals of ternary oxide a material. We hope that these data be helpful either as a scientific or technical basis in material processing. Dedicated to Prof. P. Ramasamy © 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim  相似文献   
36.
Carbon-13 chemical shift anisotropy (CSA) tensors for various carbon sites of polypeptides, and for carbon sites in alpha-helical and beta-sheet conformations of poly-L-alanine, and polyglycine, are presented. The carbonyl (13)C CSA tensors were determined from one-dimensional CPMAS spectra obtained at a slow spinning speed, whereas the CSA tensors of C(alpha) and other carbons in side chains of peptides were determined using 2D PASS experiments on powder samples. The results suggest that the spans of (13)Carbonyl CSA tensors of alanine and glycine residues in various peptides are similar, even though the magnitude of individual components of the CSA tensor and the isotropic chemical shift are different. In addition, the delta(22) element is the only component of the (13)Carbonyl CSA tensor that significantly depends on the CO.HN hydrogen-bond length. Solid-state NMR experimental results also suggest that (13)Carbonyl and (13)C(alpha) CSA tensors are similar for alpha-helical and beta-sheet conformations of poly-L-alanine, which is in agreement with the reported quantum chemical calculation studies and previous solid-state NMR experimental studies on other systems. On the other hand, the (13)C(alpha) CSA tensor of the first alanine residue is entirely different from that of the second or later alanine residues of the peptide. While no clear trends in terms of the span and the anisotropic parameter were predicted for (13)C(beta) CSA tensors of alanine, they mainly depend on the conformation and dynamics of the side chain as well as on the packing interactions in the solid state of peptides.  相似文献   
37.
Relatively longer liver technetium tracers such as95mTc (61 d) are useful for the development, evaluation and comparison of new technetium complexes for eventual development of99mTc radiopharmaceuticals. The feasibility of producing96Tc (4.35 d) and95mTc (61 d) was studied by the alpha bombardment of pure Nb targets (93Nb-100%).96Tc was obtained in a yield of 30 Ci/Ah using 16 MeV alphas, but it contained significant activity of95Tc (20 h) Relatively pure96Tc and95mTc was produced in yields of 18 Ci/Ah and about 1 Ci/Ah respectively with alphas of suitable energy and after allowing for suitable cooling periods after the end of bombardment (EOB).  相似文献   
38.
Although magic‐angle‐spinning (MAS) solid‐state NMR spectroscopy has been able to provide piercing atomic‐level insights into the structure and dynamics of various solids, the poor sensitivity has limited its widespread application, especially when the sample amount is limited. Herein, we demonstrate the feasibility of acquiring high S/N ratio natural‐abundance 13C NMR spectrum of a small amount of sample (≈2.0 mg) by using multiple‐contact cross polarization (MCP) under ultrafast MAS. As shown by our data from pharmaceutical compounds, the signal enhancement achieved depends on the number of CP contacts employed within a single scan, which depends on the T of protons. The use of MCP for fast 2D 1H/13C heteronuclear correlation experiments is also demonstrated. The significant signal enhancement can be greatly beneficial for the atomic‐resolution characterization of many types of crystalline solids including polymorphic drugs and nanomaterials.  相似文献   
39.
Phase-alternated compositeπ/2 pulses have been constructed for spinI=1 to overcome quadrupole interaction effects in solid state nuclear magnetic resonance (NMR) spectroscopy. Magnus expansion approach is used to design these sequences in a manner similar to the NMR coherent averaging theory. It is inferred that the symmetric phase-alternated compositeπ/2 pulses reported here are quite successful in producing quadrupole echo free from phase distortions. This effectiveness of the present composite pulses is due to the fact that most of them are of shorter durations as compared to the ones reported in literature. In this theoretical procedure, irreducible spherical tensor operator formalism is employed to simplify the complexity involved in the evaluation of Magnus expansion terms. It has been argued in this paper that compositeπ/2 pulse sequences for this purpose can also be derived from the broadband inversionπ pulses which are designed to compensate electric field gradient (efg) inhomogeneity in spinI=1 nuclear quadrupole resonance (NQR) spectroscopy.  相似文献   
40.
A novel route to the growth of thin films of ZnAl2O4 in nano-scale order was developed and nano-thin films of ZnAl2O4 are grown. The variation of grain size with solution concentration is reported. The thin film was deposited by modified liquid-phase deposition (LPD) technique using a novel acid based chemical reaction for the first time to ternary system. This modified LPD is based on a novel reaction that favours the formation of nanostructures during the treatment of a precursor (here ZnO) and a metal foil (Al) in diluted HF acid. The acid serves both as a solvent and catalyst. Usually, in wet process synthesis of binary systems, the metal foil will act as F ion scavenger. In this method, formation of a ternary compound as well as growth of thin film nanostructures of that compound was achieved by the same chemical reaction at room temperature. The role of acid concentration in the nanostructure formation is discussed. The relationship between HF concentration and grain size were also graphically enumerated. Structural, compositional and surface morphological properties of thin films were studied using Philips, Xpert-MPD: X-ray diffractometer and Philips, ESEM-TMP + EDAX, Nanoscope-III: AFM. The technique is a novel, simple and low cost route for the growth of nano-thin films of ternary oxide material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号