首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49992篇
  免费   20505篇
  国内免费   500篇
化学   62732篇
晶体学   51篇
力学   2449篇
综合类   22篇
数学   3429篇
物理学   2314篇
  2024年   195篇
  2023年   4768篇
  2022年   1639篇
  2021年   2845篇
  2020年   5232篇
  2019年   2654篇
  2018年   2643篇
  2017年   757篇
  2016年   6229篇
  2015年   6198篇
  2014年   5649篇
  2013年   5867篇
  2012年   3665篇
  2011年   1350篇
  2010年   3904篇
  2009年   3856篇
  2008年   1349篇
  2007年   952篇
  2006年   275篇
  2005年   237篇
  2004年   161篇
  2003年   155篇
  2002年   147篇
  2001年   130篇
  1997年   121篇
  1996年   132篇
  1995年   223篇
  1994年   153篇
  1993年   284篇
  1992年   149篇
  1988年   142篇
  1987年   122篇
  1984年   118篇
  1983年   116篇
  1982年   142篇
  1981年   168篇
  1980年   201篇
  1979年   206篇
  1978年   218篇
  1977年   334篇
  1976年   394篇
  1975年   478篇
  1974年   501篇
  1973年   323篇
  1972年   455篇
  1971年   416篇
  1970年   625篇
  1969年   459篇
  1968年   487篇
  1967年   120篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
991.
992.
Bis(clickable) mesoporous silica nanospheres (ca. 100 nm) were obtained by the co‐condensation of TEOS with variable amounts (2–5 % each) of two clickable organosilanes in the presence of CTAB. Such nanoparticles could be easily functionalized with two independent functions using the copper‐catalyzed alkyne‐azide cycloaddition (CuAAC) reaction to transform them into nanomachines bearing cancer cell targeting ligands with the ability to deliver drugs on‐demand. The active targeting was made possible after anchoring folic acid by CuAAC click reaction, whereas the controlled delivery was performed by clicked azobenzene fragments. Indeed, the azobenzene groups are able to obstruct the pores of the nanoparticles in the dark whereas upon irradiation in the UV or in the blue range, their trans‐to‐cis photoisomerization provokes disorder in the pores, enabling the delivery of the cargo molecules. The on‐command delivery was proven in solution by dye release experiments, and in vitro by doxorubicin delivery. The added value of the folic acid ligand was clearly evidenced by the difference of cell killing induced by doxorubicin‐loaded nanoparticles under blue irradiation, depending on whether the particles featured the clicked folic acid ligand or not.  相似文献   
993.
Alkyl‐ and aryl vinyl sulfones were obtained by eosin Y (EY)‐mediated visible‐light photooxidation of sulfinate salts and the reaction of the resulting S‐centered radicals with alkenes. Optimized reaction conditions, the sulfinate and alkene scope, and X‐ray structural analyses of several reaction products are provided. A detailed spectroscopic study explains the reaction mechanism, which proceeds through the EY radical cation as key intermediate oxidizing the sulfinate salts.  相似文献   
994.
The first stereoselective version of an iodine(III)‐mediated rearrangement of arylketones in the presence of orthoesters is described. The reaction products, α‐arylated esters, are very useful intermediates in the synthesis of bioactive compounds such as ibuprofen. With chiral lactic acid‐based iodine(III) reagents product selectivities of up to 73 % ee have been achieved.  相似文献   
995.
Ruthenium(II) complexes bearing a tridentate bis(N-heterocyclic carbene) ligand reacted with iminoiodanes (PhI=NR) resulting in the formation of isolable ruthenium(III)–amido intermediates, which underwent cleavage of a C−N bond of the tridentate ligand and formation of an N-substituted imine group. The RuIII–amido intermediates have been characterized by 1H NMR, UV/Vis, ESI-MS, and X-ray crystallography. DFT calculations were performed to provide insight into the reaction mechanism.  相似文献   
996.
Common oxidants used in chemical synthesis, including newly developed perruthenates, were evaluated in the context of understanding (and better appreciating) the sensitiveness and associated potential hazards of these reagents. Analysis using sealed cell differential scanning calorimetry (scDSC) facilitated Yoshida correlations, which were compared to impact sensitiveness and electrostatic discharge experiments (ESD), that enabled sensitiveness ranking. Methyltriphenylphoshonium perruthenate (MTP3, 8 ), isoamyltriphenylphosphonium perruthenate (ATP3, 7 ) and tetraphenylphosphonium perruthenate (TP3, 9 ) were found to be the most sensitive followed by 2-iodoxybenzoic acid (IBX, 2 ) and benzoyl peroxide (BPO, 10 ), whereas the most benign were observed to be Oxone ( 12 ), manganese dioxide (MnO2, 13 ), and N-bromosuccinimide (NBS, 17 ).  相似文献   
997.
A self-assembled Fe4L6 cage complex internally decorated with acid functions is capable of accelerating the thioetherification of activated alcohols, ethers and amines by up to 1000-fold. No product inhibition is seen, and effective supramolecular catalysis can occur with as little as 5 % cage. The substrates are bound in the host with up to micromolar affinities, whereas the products show binding that is an order of magnitude weaker. Most importantly, the cage host alters the molecularity of the reaction: whereas the reaction catalyzed by simple acids is a unimolecular, SN1-type substitution process, the rate of the host-mediated process is dependent on the concentration of nucleophile. The molecularity of the cage-catalyzed reaction is substrate-dependent, and can be up to bimolecular. In addition, the catalysis can be prevented by a large excess of nucleophile, where substrate inhibition dominates, and the use of tritylated anilines as substrates causes a negative feedback loop, whereby the liberated product destroys the catalyst and stops the reaction.  相似文献   
998.
o-Alkenylation of unprotected phenols has been developed by direct C−H functionalization catalyzed by PdII. This work features phenol group as a directing group and realizes highly site-selective C−H bond functionalization of phenols to achieve the corresponding products in moderate to excellent yields at 60 °C. The advantages of this reaction include unprecedented C−H functionalization using phenol as a directing group, high regioselectivity, good substrate scope, mild reaction conditions, and high efficiency. To the best of our knowledge, this is the first example of a regioselective C−H alkenylation of unprotected phenols utilizing phenolic hydroxyl group as a directing group. The alkenylation of unprotected tyrosine and intramolecular cyclization are also successfully carried out under this catalytic system in good yields. Furthermore, this novel method enables a late-stage modification of complex phenol-containing bioactive molecules toward a diversity-oriented drug discovery.  相似文献   
999.
Compound I from cytochrome P450 119 prepared by the photooxidation method involving peroxynitrite oxidation of the resting enzyme to Compound II followed by photooxidation to Compound I was compared to Compound I generated by m-chloroperoxybenzoic acid (MCPBA) oxidation of the resting enzyme. The two methods gave the same UV/Visible spectra, the same products from oxidations of lauric acid and palmitic acid and their (ω-2,ω-2,ω-3,ω-3)-tetradeuterated analogues, and the same kinetics for oxidations of lauric acid and caprylic acid. The experimental identities between the transients produced by the two methods leave no doubt that the same Compound I species is formed by the two methods.  相似文献   
1000.
Purified samples of Ho3N@C2(22010)-C78 and Tb3N@C2(22010)-C78 have been isolated by two distinct processes from the rich array of fullerenes and endohedral fullerenes present in carbon soot from graphite rods doped with Ho2O3 or Tb4O7. Crystallographic analysis of the endohedral fullerenes as cocrystals with Ni(OEP) (in which OEP is the dianion of octaethylporphyrin) shows that both molecules contain the chiral C2(22010)-C78 cage. This cage does not obey the isolated pentagon rule (IPR) but has two sites where two pentagons share a common C−C bond. These pentalene units bind two of the metal ions, whereas the third metal resides near a hexagon of the cage. Inside the cages, the Ho3N or Tb3N unit is planar. Ho3N@C2(22010)-C78 and Tb3N@C2(22010)-C78 use the same cage previously found for Gd3N@C2(22010)-C78 rather than the IPR-obeying cage found in Sc3N@D3h-C78.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号