首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15789篇
  免费   663篇
  国内免费   46篇
化学   10638篇
晶体学   247篇
力学   508篇
综合类   1篇
数学   1245篇
物理学   3859篇
  2024年   51篇
  2023年   174篇
  2022年   301篇
  2021年   444篇
  2020年   504篇
  2019年   562篇
  2018年   512篇
  2017年   498篇
  2016年   707篇
  2015年   505篇
  2014年   793篇
  2013年   1352篇
  2012年   1204篇
  2011年   1231篇
  2010年   825篇
  2009年   649篇
  2008年   808篇
  2007年   785篇
  2006年   622篇
  2005年   534篇
  2004年   406篇
  2003年   334篇
  2002年   283篇
  2001年   165篇
  2000年   150篇
  1999年   106篇
  1998年   79篇
  1997年   107篇
  1996年   100篇
  1995年   85篇
  1994年   79篇
  1993年   104篇
  1992年   107篇
  1991年   90篇
  1990年   71篇
  1989年   75篇
  1988年   53篇
  1987年   50篇
  1986年   45篇
  1985年   74篇
  1984年   74篇
  1983年   67篇
  1982年   57篇
  1981年   53篇
  1980年   56篇
  1979年   72篇
  1978年   59篇
  1977年   67篇
  1976年   61篇
  1975年   42篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
961.
Human maltase glucoamylase (MGAM) is a potent molecular target for controlling post prandial glucose surplus in type 2 diabetes. Binding of small molecules from Syzygium sp. with α-glucosidase inhibitory potential in MGAM has been investigated in silico. Our results suggest that myricetin was the most potent inhibitor with high binding affinity for both N- and C-terminals of MGAM. Molecular dynamics revealed that myricetin interacts in its stretched conformation through water-mediated interactions with C-terminal of MGAM and by normal hydrogen bonding with the N-terminal. W1369 of the extended 21 amino acid residue helical loop of C-terminal plays a major role in myricetin binding. Owing to its additional sugar sites, overall binding of small molecules favours C-terminal MGAM.  相似文献   
962.
The Fe(III) complex, [FeIII(HQS)3] (HQS = 8-hydroxyquinoline-5-sulfonic acid), is found to effect sensitization of the large band gap semiconductor, TiO2. The role of interfacial electron transfer in sensitization of TiO2 nanoparticles by surface adsorbed [FeIII(HQS)3] was studied using femtosecond time scale transient absorption spectroscopy. Electron injection has been confirmed by direct detection of the electron in the conduction band. A TiO2-based dye-sensitized solar cell (DSSC) was fabricated using [FeIII(HQS)3] as a sensitizer, and the resulting DSSC exhibited an open-circuit voltage value of 425 mV. The value of the short-circuit photocurrent was found to be 2.5 mA/cm2. The solar to electric power conversion efficiency of the [FeIII(HQS)3] sensitized TiO2-based DSSC device was 0.75 %. The results are discussed in the context of sensitization of TiO2 by other Fe(II)-dye complexes.  相似文献   
963.
Hybrid nanomaterials have received voluminous interest due to the combination of unique properties of organic and inorganic component in one material. In this class, magnetic polymer nanocomposites are of particular interest because of the combination of excellent magnetic properties, stability, and good biocompatibility. Organic–inorganic magnetic nanocomposites can be prepared by in situ, ex situ, microwave reflux, co-precipitation, melt blending, and ceramic–glass processing and plasma polymerization techniques. These nanocomposites have been exploited for in vivo imaging, as superparamagnetic or negative contrast agents, drug carriers, heavy metal adsorbents, and magnetically recoverable photocatalysts for degradation of organic pollutants. This review article is mainly focused on fabrication of magnetic polymer nanocomposites and their applications. Different types of magnetic nanoparticles, methods of their synthesis, properties, and applications have also been reviewed briefly. The review also provides detailed insight into various types of magnetic nanocomposites and their synthesis. Diverse applications of magnetic nanocomposites including environmental and biomedical uses have been discussed.  相似文献   
964.
The kinetics of a triarylmethane dye, brilliant green (BG), by sodium N-chloro-p-toluenesulfonamide or chloramine-T (CAT) was studied spectrophotometrically in HClO4 media at 303 K. Under identical experimental conditions, the rate law was ?d [BG]/dt = k [BG] [H+]. Variations in ionic strength (μ) of the medium had no effect on the oxidation velocity. Addition of p-toluenesulfonamide, the reduction product of CAT and Cl?, had no significant effect on the rate of reaction. The values of rate constants observed at five different temperatures (298, 303, 308, 313, and 318 K) were utilized to calculate the activation parameters. The observed results have been explained by a general mechanism and the related rate law has been obtained. The process demonstrated in this study is cost effective, which holds great promise in potential application for pollutant control.  相似文献   
965.
The complexation of three isoquinoline alkaloids berberine, palmatine and coralyne with α-, β-, and γ-CDs were studied by absorption, fluorescence, circular dichroism, NMR spectroscopy and microcalorimetric assay techniques. Their binding constant (K BH) values were determined by Benesi–Hildebrand equation. All the alkaloids formed 1:1 stoichiometry complexes with the cyclodextrins (CDs). The binding affinity is largest in β-CD followed by γ-, and α-CD for coralyne, followed by berberine and then palmatine. The thermodynamic parameters of the complexation were determined by calorimetry. The stoichiometry of complex formation and the variation of the apparent binding constant from spectroscopic studies were confirmed by calorimetry. The formation of the inclusion complexes was entropy driven in almost all the systems. Coralyne formed the strongest complex with all the CDs, followed by berberine and palmatine in that order. Coralyne-β-CD complex was studied through NMR, indicating more than one interaction mode.  相似文献   
966.
Bis-β-cyclodextrin connected via ethylene diamine on the primary side of the β-cyclodextrin was synthesized and used for the supramolecular non-covalent inclusion complex with C60 in a mixed solvent system at room temperature. The apparent association constant of the 2:2 inclusion complex determined by combination of UV–Vis absorbance and Benesi–Hildebrand equation was found to be 1.78 × 106 M?1. The product obtained was highly water-soluble and superior in stability in aqueous medium as compared to previously known β-cyclodextrin/C60 complex. The non-covalent self-assembly of bis-β-cyclodextrin and C60 was characterized and confirmed from FT-IR, UV–Vis, XRD and TGA. The supramolecular aggregation behavior and particle size of the inclusion complex was found from transmission electron microscope and static light scattering measurements. The size of the inclusion complex was found to be ~30 ± 5 nm.  相似文献   
967.
Magnetic nickel ferrite (NiFe2O4) was prepared by sol–gel process and calcined in the 2.45 GHz singlemode microwave furnace to synthesize nickel nanopowder. The sol–gel method was used for the processing of the NiFe2O4 powder because of its potential for making fine, pure and homogeneous powders. Sol–gel is a chemical method that has the possibility of synthesizing a reproducible material. Microwave energy is used for the calcining of this powder and the sintering of the NiFe2O4 samples. Its use for calcination has the advantage of reducing the total processing time and the soak temperature. In addition to the above combination of sol–gel and microwave processing yields to nanoscale particles and a more uniform distribution of their sizes. X-ray diffraction, energy dispersive X-ray spectroscopy, transmission electron microscopy and vibrating sample magnetometer were carried out to investigate structural, elemental, morphological and magnetic aspects of NiFe2O4. The results showed that the mean size and the saturation magnetization of the NiFe2O4 nanoparticles are about 30 nm and 55.27 emu/g, respectively. This method could be used as an alternative to other chemical methods in order to obtain NiFe2O4 nanoparticles.  相似文献   
968.
Fine powders of zirconium oxide (ZrO2) were prepared using zirconium oxychloride by combustion method. The crystalline size of pure ZrO2 was in range of 14–45 nm. Graphene was incorporated in ZrO2 using graphene oxide as precursor and reducing it with hydrazine hydrate. X-Ray diffraction, Fourier transform infra-red spectroscopy, thermogravimetric analysis and Raman spectroscopy methods were used to characterize the samples. The role of graphene in structural transformation of ZrO2 to monoclinic phase was clearly observed.  相似文献   
969.
Fluorine doped SnO2 nanostructures were grown using ultrasonic assisted sol–gel method. The gel was obtained by dissolving stannous chloride in methanol with ammonium fluoride as dopant followed by irradiation with ultrasonic vibrations. Obtained samples were characterized by structural, morphological and optical studies. All the peaks in the X-ray diffractograms are identified and indexed as tetragonal cassiterite structure. Negative slope of Williamson–Hall plots indicates compressive strain. Particle size of SnO2 nanostructures is decreases with increases in concentration of fluorine doping. Atomic force microscopy, scanning electron microscopy and transmission electron microscopy studies confirm the formation of ring like porous structures and then hollow tube like growth with increase in the fluorine concentration. Peaks in Raman spectra also indicate strong confinement in SnO2 particles. Distinct peaks in the PL spectra make the structure suitable for photovoltaic applications.  相似文献   
970.
The present study involved development of a novel sodium alginate (SA)/HPMC/light liquid paraffin emulsified (o/w) gel beads containing Diclofenac sodium (DS) as an active pharmaceutical ingredient and its site specific delivery by using hard gelatin capsule fabricated by enteric coated Eudragit L-100 polymer. Emulsified gel beads were formulated by 3-level factorial design, ionic gelatin method. The obtained beads were characterized by Fourier transform infrared, X-ray diffraction and Field emission scanning electron microscope analysis. The variables such as SA (X1), HPMC (X2), were optimized for drug loading and in vitro drug release with the help of response surface methodology (RSM). The RSM analysis predicted that SA was significant for both drug loading (p = 0.0005) and drug release (p = 0.0041). HPMC was only significant for drug release (p = 0.0154). The cross-product contribution (2FI) and quadratic model were found to be adequate and statistically accurate with correlation value (R2) of 0.9054 and 0.9450 to predict the drug loading and drug release respectively. An increase in concentration of HPMC and SA decreases the drug loading as well as the drug release. The obtained optimum values of drug loading and DS released were 7.43 % and 85.54 % respectively, which were well in agreement with the predicted value by RSM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号