首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   2篇
化学   56篇
晶体学   2篇
数学   1篇
物理学   15篇
  2016年   3篇
  2015年   3篇
  2014年   1篇
  2013年   7篇
  2012年   2篇
  2011年   8篇
  2010年   3篇
  2009年   5篇
  2008年   3篇
  2007年   3篇
  2006年   4篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   5篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1987年   2篇
  1984年   1篇
  1983年   1篇
  1978年   1篇
排序方式: 共有74条查询结果,搜索用时 31 毫秒
21.
Hydrated powders of non-gelatinised starch and hydrogels of gelatinised starch alone or with addition of modified nanosilica (with grafted aminopropylmethylsilyl groups substituting one-third of surface silanols) were studied using broadband dielectric relaxation spectroscopy (DRS), thermally stimulated depolarisation current (TSDC) method and 1H NMR spectroscopy with layer-by-layer freezing-out of bulk and interfacial waters. The 1H NMR and TSDC techniques with the use of Gibbs–Thomson relation for the freezing point depression allow us to calculate: (i) the thermodynamic parameters of interfacial water weakly and strongly bound to polymer molecules and nanoparticles; (ii) size distributions of pores filled by structured water; (iii) surface area and volume of micro-, meso- and macropores. The DRS and TSDC results for hydrogels and hydrated powders with starch/modified fumed silica show that the β- and γ-relaxations of starch are strongly affected by water and functionalised silica nanoparticles which slow down both low- and high-frequency and low- and high-temperature relaxations.  相似文献   
22.
Dynamic mechanical–thermal analysis (DMTA), differential scanning calorimetry (DSC), thermally stimulated depolarization currents (TSDC) and, mainly, broadband dielectric relaxation spectroscopy (DRS) were employed to investigate in detail glass transition and polymer dynamics in silver/poly(methyl methacrylate) (Ag/PMMA) nanocomposites. The nanocomposites were prepared by radical polymerization of MMA in the presence of surface modified Ag nanoparticles with a mean diameter of 5.6 nm dispersed in chloroform. The fraction of Ag nanoparticles in the final materials was varied between 0 and 0.5 wt%, the latter corresponding to 0.055 vol%. The results show that the nanoparticles have practically no effect on the time scale of the secondary β and γ relaxations, whereas the magnitude of both increases slightly but systematically with increasing filler content. The segmental α relaxation, associated with the glass transition, becomes systematically faster and stronger in the nanocomposites. The glass transition temperature Tg decreases with increasing filler content of the nanocomposites up to about 10 °C, in good correlation by the four techniques employed. Finally, the elastic modulus decreases slightly but systematically in the nanocomposites, both in the glassy and in the rubbery state. The results are explained in terms of plasticization of the PMMA matrix, due to constraints imposed to packing of the chains by the Ag nanoparticles, and at the same time, of the absence of strong polymer–filler interactions, due to the surface modification of the Ag nanoparticles by oleylamine at the stage of preparation.  相似文献   
23.
We revisit molecular mobility and crystallinity in a series of Polyurethanes prepared with polytetramethylene ether glycol (PTMEG) with varying molecular weights as soft component, methylene diisocyanate (MDI) as diisocyanate component and butanediol as chain extender in close comparison to the properties of the respective macrodiols used as soft segments. Modulated differential scanning calorimetry (MDSC) was utilized to study the glass transition and in detail crystallization and melting. Thermally stimulated depolarization currents (TSDC), and dielectric relaxation spectroscopy (DRS) were used to investigate local dynamics, dynamic glass transition and indirectly, crystallinity and morphology. The dielectric data were evaluated through representation by contour plots in the Arrhenius plane. Glass transition temperature of the diols is practically unaffected by molecular weight due to H-bonding effect, while for the PUs it showed a decreasing dependence due to higher microphase separation. Results are also discussed in terms of fragility. Crystallization of PTMEG becomes more intense and stable with increasing molecular weight, while the reflection of its melting process on its dielectric response was also observed. A weak crystallization process in the Polyurethane with long soft segments was well resolved using MDSC. Evidence for the occurrence of spinodal decomposition before this crystallization was observed by means of DRS.  相似文献   
24.
Water and polymer dynamics in hydrogels based on random copolymers of hydrophilic poly(hydroxyl ethyl acrylate) (PHEA) and hydrophobic poly(ethyl acrylate) (PEA), in wide ranges of composition, were investigated by means of two dielectric techniques, thermally stimulated depolarization currents (TSDC) and, mainly, broadband dielectric relaxation spectroscopy (DRS) at several levels of relative humidity/water content. Water sorption of the hydrogels was studied by equilibrium sorption isotherms (ESI). Two secondary relaxations (γ and βsw) and the primary (segmental) α relaxation associated with the glass transition of the copolymer matrix were followed and analyzed against copolymer composition and water content. The results show that the copolymers are homogeneous at nm scale, except at very high PEA content. Correlations were observed between results on the organization of water in the hydrogels and on water effects on polymer dynamics. Distinct changes in the dielectric response, in particular in the time scale and the dielectric strength of the βsw relaxation, at the water content of the completion of the first hydration layer indicate that water molecules themselves contribute to the dielectric response at higher water contents. Proton conductivity of the hydrogels at various levels of water content was also studied and correlation to segmental dynamics (decoupling) was analyzed.  相似文献   
25.
The sub-glass-transition-temperature (sub-T g relaxations of an epoxy resin system based on diglycidyl ether of bisphenol-A (DGEBA) and cured with triethylenetetramine (TETA) were investigated by means of the thermally stimulated depolarization current (TSDC) technique in the temperature range 77 K to 300 K. Three relaxation regions were observed: the γ relaxation at about 150 K, the β relaxation at 160 K to 200 K and the ω relaxation at 240 K to 270 K. The plasticization effect on the aforementioned relaxations of a plasticizer chemically connected to the epoxy resin network was investigated. The amount of plasticizer (commercial name THIOCOL LP3) was varied between 0% and 60% by weight of the epoxy. The broad range of the β relaxation reflects the heterogeneous structure of the material. The activation energies of the γ and β relaxations were calculated using the thermal sampling technique. Physical aging strongly influenced the TSDC thermogram of the ω relaxation, indicating phase separation during the aging procedure. Water effects were systematically investigated from dry samples to water-saturated samples (water content, 2.5%). In all specimens, water induced plasticization, which is expressed by the shifting of the β relaxation toward lower temperatures. The mode of water absorption (immersion in water or exposure to humid environment) also influenced the evolution of the ω relaxation.  相似文献   
26.
We report the fabrication of electrically functional polyaniline thin-film microdevices. Polyaniline films were printed in the solid phase by Laser-Induced Forward Transfer directly between Au electrodes on a Si/SiO2 substrate. To apply solid-phase deposition, aniline was in situ polymerized on quartz substrates. Laser deposition preserves the morphology of the films and delivers sharp features with controllable dimensions. The electrical characteristics of printed polyaniline present ohmic behavior, allowing for electroactive applications. Results on gas sensing of ammonia are presented.  相似文献   
27.
Broadband dielectric relaxation spectroscopy (DRS, 10−2‐109 Hz), thermally stimulated depolarization currents (TSDC) techniques and dynamic mechanical analysis (DMA) were employed to investigate the dynamic glass transition and, thus, phase morphology in sequential IPNs of poly(butyl acrylate) (PBA) and poly(butyl methacrylate) (PBMA) with 10 weight % of ethyleneglycol dimethacrylate (EGDMA) as branching agent. In a parallel investigation, similar IPNs with only 0.1% branching agent showed clearly phase separation. In the highly branched IPNs, forced compatibilization induces miscibility of the two components. The results are discussed in terms of suppression of cooperativity and dynamic heterogeneity in the IPNs.  相似文献   
28.
Sequential poly(methyl acrylate)/poly(hydroxyethyl acrylate) interpenetrating polymer networks with different poly(hydroxyethyl acrylate) contents were prepared by free radical polymerization of hydroxyethyl acrylate inside the previously polymerized poly(methyl acrylate) network. Differential scanning calorimetry on dry samples shows that the interpenetrating polymer networks exhibit phase separation, and no differences are found between the glass transition temperatures of the two phases present in the interpenetrating polymer network and those of the pure components. Thermally stimulated depolarization current experiments were used to study the influence of water sorption on the mobility of the different molecular groups in the poly(hydroxyethyl acrylate) phase of the interpenetrating polymer network. Isothermal water sorption of the interpenetrating polymer networks and pure poly(methyl acrylate) and poly(hydroxyethyl acrylate) networks is analyzed with different theories to compare the behavior of the poly(hydroxyethyl acrylate) phase in the interpenetrating polymer networks with that of the pure poly(hydroxyethyl acrylate) network. Diffusion coefficients of water in the interpenetrating polymer networks are obtained by means of dynamic sorption experiments. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1587–1599, 1999  相似文献   
29.
Molecular motion and thermal stability in two series of nanophase-separated polyimide-silica (PI-SiO2) hybrid networks with chemically bound components were studied. The hybrids were prepared via a sol-gel process and differed in PI structure and chain length, and in SiO2 content ranging from 10 to 50 wt.%. Differential scanning calorimetry, laser-interferometric creep rate spectroscopy, dielectric relaxation spectroscopy, thermally stimulated depolarization current techniques, and thermogravimetry were used covering, on the whole, the ranges of 100–900 K and 10−3-109 Hz. Silica domains influenced PI dynamics in two opposite directions. Loosened segmental packing in chains confined to nanovolumes resulted mainly in rise of small-scale motion below β-relaxation region, while anchoring of chain ends to ‘rigid walls’ caused, contrarily, a partial or total suppression of segmental motion above Tβ, especially drastically at the temperatures close to and within glass transition. The latter resulted in a large change in thermal stability, e.g., 2.5-fold increasing of the apparent activation energy of thermooxidative degradation, and more than 100° rise of predicted long-term thermal stability for the hybrids as compared to that for PI.  相似文献   
30.
Equilibrium and dynamic sorption isotherm measurements, differential scanning calorimetry (DSC) measurements, and, mainly, dielectric relaxation spectroscopy (DRS) measurements by means of the thermally stimulated depolarization currents (TSDC) method were used to investigate the hydration properties of linear segmented polyurethane copolymers. Three types of samples were investigated with various fractions of hard and soft block segments. They were based on polyethylene adipate (PEA), 4,4′-diphenylmethane diisocyanate (MDI) and 1,4-butanediol (BDO). At 20°C the water content h of the samples at various values of relative humidity rh increases in proportion to the weight fraction of soft block segments phase. At saturation (rh = 100%) the ratio of sorbed water molecules to polar carbonyl polyester groups is 0.13. At saturation at 20°C there is no fraction of freezable water. The glass transition temperature, Tg, measured by DSC and by TSDC, shifts to lower temperature with increasing h by about 8–10 K at saturation at 20°C. A dielectric relaxation mechanism related to interfacial polarization in the phase-separated morphology is also plasticized by water in a way similar to that observed for the main (α) relaxation. © 1996 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号