首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
化学   6篇
力学   1篇
数学   2篇
物理学   6篇
  2021年   1篇
  2018年   1篇
  2014年   1篇
  2013年   5篇
  2005年   1篇
  2004年   1篇
  1999年   1篇
  1996年   1篇
  1981年   1篇
  1971年   1篇
  1967年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
11.
The Gaussian-2, Gaussian-3, complete basis set- (CBS-) QB3, and CBS-APNO methods have been used to calculate Delta H degrees and Delta G degrees values for neutral clusters of water, (H(2)O)(n), where n = 2-6. The structures are similar to those determined from experiment and from previous high-level calculations. The thermodynamic calculations by the G2, G3, and CBS-APNO methods compare well against the estimated MP2(CBS) limit. The cyclic pentamer and hexamer structures release the most heat per hydrogen bond formed of any of the clusters. While the cage and prism forms of the hexamer are the lowest energy structures at very low temperatures, as temperature is increased the cyclic structure is favored. The free energies of cluster formation at different temperatures reveal interesting insights, the most striking being that the cyclic trimer, cyclic tetramer, and cyclic pentamer, like the dimer, should be detectable in the lower troposphere. We predict water dimer concentrations of 9 x 10(14) molecules/cm(3), water trimer concentrations of 2.6 x 10(12) molecules/cm(3), tetramer concentrations of approximately 5.8 x 10(11) molecules/cm(3), and pentamer concentrations of approximately 3.5 x 10(10) molecules/cm(3) in saturated air at 298 K. These results have important implications for understanding the gas-phase chemistry of the lower troposphere.  相似文献   
12.
The authors deal with nonlinear elliptic and parabolic systems that are the Bellman like systems associated to stochastic differential games with mean field dependent dynamics. The key novelty of the paper is that they allow heavily mean field dependent dynamics. This in particular leads to a system of PDE’s with critical growth, for which it is rare to have an existence and/or regularity result. In the paper, they introduce a structural assumptions that cover many cases in stochastic differential games with mean field dependent dynamics for which they are able to establish the existence of a weak solution. In addition, the authors present here a completely new method for obtaining the maximum/minimum principles for systems with critical growths, which is a starting point for further existence and also qualitative analysis.  相似文献   
13.
Critical constants of pure fluids (as important reference data in constructing vapour-liquid phase diagrams and basic input of various estimation methods) were determined for systems of non-spherical Kihara molecules; values of the critical temperature, density, compression factor and pressure of fluids composed of prolate and oblate molecules were evaluated from the fourth-order virial expansion. The second and third virial coefficients of the Kihara molecules were determined by applying the recently proposed method in which the effect of molecular core geometry and functional dependence of a pair interaction on the surface-surface distance are factorized and the former contribution determined from a formula for the corresponding hard convex body virial coefficient. The virial expansion for non-spherical Kihara molecules is applied to determine the critical constants of n-alkanes (methane to octane) and cyclic hydrocarbons (cyclopentane, cyclohexane, benzene and naphthalene); a fair agreement with experimental data was found.  相似文献   
14.
For systems of Kihara molecules with circular cores, the values of the reduced critical constants were determined from the fourth-order virial expansion as functions of the core diameter/thickness ratio. From expressions for the reduced functions both for the oblate and prolate shapes, the values of critical constants of four cyclic hydrocarbons and four branched alkanes were evaluated and compared with the experimental data and values obtained from the perturbation theory.  相似文献   
15.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号