首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   6篇
  国内免费   1篇
化学   122篇
晶体学   1篇
数学   18篇
物理学   17篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   6篇
  2019年   5篇
  2018年   3篇
  2017年   3篇
  2016年   5篇
  2015年   2篇
  2014年   8篇
  2013年   7篇
  2012年   8篇
  2011年   12篇
  2010年   7篇
  2009年   3篇
  2008年   13篇
  2007年   7篇
  2006年   8篇
  2005年   19篇
  2004年   4篇
  2003年   4篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1997年   2篇
  1995年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
  1978年   2篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1971年   1篇
  1968年   1篇
  1941年   1篇
  1934年   2篇
  1930年   2篇
排序方式: 共有158条查询结果,搜索用时 390 毫秒
61.
Macrocyclic systems derived from crown-annelated terthiophene involving a median EDOT unit have been synthesized by coupling diiodooligooxyethylene chains and bis(2-cyanoethylsulfanyl)terthiophene under high dilution conditions. The metal cation complexing properties of the compounds have been analyzed using 1H NMR, UV-vis spectroscopy, and cyclic voltammetry. These various experiments provide consistent results showing that one of the compounds exhibits interesting complexing properties for Pb2+.  相似文献   
62.
The photophysics of 4-(dimethylamino)pyridine (DMAP) has been investigated in different solvents in the presence of aliphatic and fluorinated aliphatic alcohols, respectively. For most systems, consecutive two-step hydrogen-bonded complex formation is observed in the presence of alcohols. Equilibrium constants are determined from UV spectroscopic results for the formation of singly and doubly complexed species. The resolved absorption and fluorescence spectra for the singly and doubly complexed DMAP are derived by means of the equilibrium constants. Exceptionally large hydrogen bond basicity values are found for the ground and singlet excited DMAP molecules. In n-hexane, as a consequence of complex formation, the intramolecular charge transfer (ICT) emission becomes dominant over of the locally excited fluorescence; the fluorescence and triplet yields increase considerably with complexation. In polar solvents, both the fluorescence and triplet yields of the complex are much smaller than that of the uncomplexed DMAP. The dipole moments derived for the singly complexed species from the Lippert-Mataga analysis are much larger than those of the uncomplexed molecules. However, for the relaxed ICT excited-state one obtains different dipole moments in apolar and polar solvents. This may be explained by a conformational change of the molecule in the ICT excited state from planar geometry in apolar solvent to the perpendicular structure (characterized with bigger dipole moment) in polar solvent.  相似文献   
63.
A detailed study on the effect of Mo on the gelation process of resorcinol-formaldehyde systems is presented. The evolution of the system was followed by x-ray photon correlation spectroscopy, which allows in situ investigation of the dynamics as well as of the structural evolution in non-equilibrium processes. The Mo was introduced into the system after a pre-polymerization period (PP), the effect of which was also examined. Our results show that the presence of Mo substantially modifies the gelation process by favoring the growth of large compact clusters with weak bonds between them. However, this effect can be reduced by increasing PP.  相似文献   
64.
We investigated the reversal mechanism in a Co/CoO exchange bias bilayer with a pronounced magnetocrystalline anisotropy in the ferromagnet. The anisotropy, which is induced by the growth of a highly textured Co layer, imposes a distinct reversal mechanism along the magnetically easy and hard direction. It is shown that exchange bias can be induced along both directions, despite the magnetocrystalline anisotropy. The interplay between the magnetocrystalline anisotropy and exchange bias induces a different reversal mechanism for the subsequent reversals in the two crystallographic directions. Along the hard axis, the magnetization reverses according to the reversal mechanism observed before in polycrystalline exchange bias bilayers, i.e. domain wall nucleation and motion for the first reversal and coherent rotation for the subsequent ones. Along the easy axis, domain wall motion remains the dominant reversal mechanism and magnetization rotation has only a minor contribution.  相似文献   
65.
Multinuclear one (1D-) and two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopic investigations of famotidine, the most potent and widely used histamine H2-receptor antagonist, were carried out in dimethyl sulfoxide-d6 (DMSO-d6) and water. Previous NMR assignments were either incomplete or full assignment was based only on 1D spectra and quantum-chemical calculations. Our work revealed several literature misassignments of the 1H, 13C, and 15N NMR signals and clarified the acid–base properties of the compound at the site-specific level. The erroneous assignment of Baranska et al. (J. Mol. Struct. 2001, 563) probably originates from an incorrect hypothesis about the major conformation of famotidine in DMSO-d6. A folded conformation similar to that observed in the solid-state was also assumed in solution, stabilized by an intramolecular hydrogen bond involving one of the sulphonamide NH2 protons and the thiazole nitrogen. Our detailed 1D and 2D NMR experiments enabled complete ab initio 1H, 13C, and 15N assignments and disproved the existence of the sulphonamide NH hydrogen bond in the major conformer. Rather, the molecule is predominantly present in an extended conformation in DMSO-d6. The aqueous acid–base properties of famotidine were studied by 1D 1H- and 2D 1H/13C heteronuclear multiple-bond correlation (HMBC) NMR-pH titrations. The experiments identified its basic centers including a new protonation step at highly acidic conditions, which was also confirmed by titrations and quantum-chemical calculations on a model compound, 2-[4-(sulfanylmethyl)-1,3-thiazol-2-yl]guanidine. Famotidine is now proved to have four protonation steps in the following basicity order: the sulfonamidate anion protonates at pH = 11.3, followed by the protonation of the guanidine group at pH = 6.8, whereas, in strong acidic solutions, two overlapping protonation processes occur involving the amidine and thiazole moieties.  相似文献   
66.
We demonstrate a simple bioconjugate polymer system that undergoes reversible self‐assembling into extended fibrous structures, reminiscent of those observed in living systems. It is comprised of green fluorescent protein (GFP) molecules linked into linear oligomeric strands through click step growth polymerization with dialkyne poly(ethylene oxide) (PEO). Confocal microscopy, atomic force microscopy, and dynamic light scattering revealed that such strands form high persistence length fibers, with lengths reaching tens of micrometers, and uniform, sub‐100 nm widths. We ascribe this remarkable and robust form of self‐assembly to the cooperativity arising from the known tendency of GFP molecules to dimerize through localized hydrophobic patches and from their covalent pre‐linking with flexible PEO. Dissipative particle dynamics simulations of a coarse‐grained model of the system revealed its tendency to form elongated fibrous aggregates, suggesting the general nature of this mode of self‐assembly.  相似文献   
67.
Thiomaltol, a potential S,O‐coordinating molecule, has been utilized for the complexation of four different organometallic fragments, yielding the desired RuII, OsII, RhIII, and IrIII complexes having a “piano‐stool” configuration. In addition to the synthesis of these compounds with a chlorido leaving group, the analogous 1‐methylimidazole derivatives have been prepared, giving rise to thiomaltol‐based organometallics with enhanced stability under physiological conditions. The organometallic compounds have been characterized by NMR spectroscopy, elemental analysis, and X‐ray diffraction analysis. Their behavior in aqueous solution and their interactions with certain amino acids have been studied by ESI mass spectrometry. Their pH‐dependent stability has been investigated by 1H NMR in aqueous solution, and their cytotoxicity against three different cancer cell lines has been investigated. Furthermore, their capacity as topoisomerase IIα inhibitors as well as their effect on the cell cycle distribution and reactive oxygen species (ROS) generation have been elucidated.  相似文献   
68.
Donor–acceptor molecules (D‐π‐A) built by connecting a diphenylhydrazone block to a dicyanovinyl acceptor group via various thiophene‐based π‐conjugating spacers ( 1 – 5 ) were synthesized from mono‐ or dialdehydes by a simple metal‐free procedure. Cyclic voltammetry and UV/Vis absorption spectroscopy show that the extension and/or increase of the donor strength of the spacer produces a decrease of the HOMO and LUMO energy level, a red shift of the absorption spectrum and an increase of the molecular absorption coefficient. Compared to solutions, the optical spectra of spin‐cast thin films of compounds 1–3 show a broadening and red shift of the absorption bands, consistent with the formation of J‐aggregates. In contrast the blue shift observed for the EDOT‐containing compounds 4 and 5 suggests the presence of H‐aggregates. Solution‐cast and vacuum‐deposited films of donors 1–5 were evaluated in solar cells with fullerene C60 as acceptor. A power‐conversion efficiency among the highest reported for bilayer devices of basic configuration was obtained with compound 2 . On the other hand, the results obtained with 4 and 5 suggest that the presence of EDOT in the structure can have deleterious effects on the organization and performances of the donor material.  相似文献   
69.
70.
The five 2,3,5,6-tetrafluoro-4-aminobenzonitriles XABN4F with a dimethyl-amino (DMABN4F), diethyl-amino (DEABN4F), azetidinyl (AZABN4F), methyl-amino (MABN4F) or amino (ABN4F) group undergo ultrafast intramolecular charge transfer (ICT) at room temperature, in the polar solvent acetonitrile (MeCN) as well as in the nonpolar n-hexane. ICT also takes place with the corresponding non-fluorinated aminobenzonitriles DMABN, DEABN and AZABN in MeCN, whereas for these molecules in n-hexane only minor (DMABN, DEABN) or no (AZABN) ICT fluorescence is detected. For the secondary (MABN) and primary (ABN) amines, an ICT reaction does not occur, which makes ABN4F the first electron donor/acceptor molecule with an NH(2) group for which ICT is observed. The ICT state of the XABN4Fs has a dipole moment of around 14 D, clearly smaller than that of DMABN (17 D). This difference is attributed to the electron withdrawing from the CN group to the phenyl ring, exerted by the four F-substituents. The reaction from the initially prepared locally excited (LE) to the ICT state in n-hexane proceeds in the sub-picosecond time range: 0.35 ps (DMABN4F), 0.29 ps (DEABN4F) and 0.13 ps (AZABN4F), as determined from femtosecond transient absorption measurements. In the highly polar solvent MeCN, an ICT reaction time of around 90 fs is observed for all five XABN4Fs, irrespective of the nature of their amino group. This shows that with these molecules in MeCN the ICT reaction rate is limited by the solvent dielectric relaxation time of MeCN, for which a value of around 90 fs has been reported. It is therefore concluded that, during this ultrashort ICT reaction, a large-amplitude motion such as a full 90 degrees twist of the amino group is unlikely to occur in the XABN4Fs. The ICT state of the XABN4Fs is strongly quenched via internal conversion (IC), with a lifetime tau'(0) (ICT) down to 3 ps, possibly by a reaction passing through a conical intersection made accessible due to a deformation of the phenyl group by out-of-plane motions induced by vibronic coupling between low-lying pisigma* and pipi* states in the XABN4Fs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号