首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1032篇
  免费   43篇
  国内免费   7篇
化学   722篇
力学   27篇
数学   168篇
物理学   165篇
  2023年   19篇
  2022年   9篇
  2021年   34篇
  2020年   25篇
  2019年   29篇
  2018年   11篇
  2017年   15篇
  2016年   40篇
  2015年   40篇
  2014年   45篇
  2013年   68篇
  2012年   67篇
  2011年   69篇
  2010年   39篇
  2009年   45篇
  2008年   41篇
  2007年   55篇
  2006年   41篇
  2005年   47篇
  2004年   39篇
  2003年   27篇
  2002年   28篇
  2001年   13篇
  2000年   3篇
  1999年   18篇
  1998年   10篇
  1997年   11篇
  1996年   15篇
  1995年   10篇
  1994年   9篇
  1993年   7篇
  1992年   7篇
  1991年   4篇
  1988年   5篇
  1987年   8篇
  1986年   13篇
  1985年   9篇
  1984年   3篇
  1983年   7篇
  1982年   6篇
  1980年   10篇
  1978年   4篇
  1977年   4篇
  1976年   7篇
  1975年   5篇
  1974年   7篇
  1972年   6篇
  1971年   5篇
  1967年   6篇
  1966年   7篇
排序方式: 共有1082条查询结果,搜索用时 0 毫秒
11.
Peaks in collision cross sections are often interpreted as resonances. The complex dilation method, as well as other methods relying on analytic continuation of the scattering formalism, can be used to clarify whether these structures are true resonances in the sense that they are poles of the S‐matrix and the associated Green function. The performance of the Mittag–Leffler expansion and T‐matrix Green function expansion methods are formally and computationally compared. The two methods are applied to two model potentials. Eigenenergies, s‐wave residues, and cross sections are computed with both methods. The resonance contributions to the cross sections are further analyzed by removing the residue contributions from the Mittag–Leffler and Green function expansion sums, respectively. It is suggested that the contribution of a resonance to a cross section should be defined through its S‐matrix residue. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   
12.
We have calculated the self-consistent Green's function for a number of atoms and diatomic molecules. This Green's function is obtained from a conserving self-energy approximation, which implies that the observables calculated from the Green's functions agree with the macroscopic conservation laws for particle number, momentum, and energy. As a further consequence, the kinetic and potential energies agree with the virial theorem, and the many possible methods for calculating the total energy all give the same result. In these calculations we use the finite temperature formalism and calculate the Green's function on the imaginary time axis. This allows for a simple extension to nonequilibrium systems. We have compared the energies from self-consistent Green's functions to those of nonselfconsistent schemes and also calculated ionization potentials from the Green's functions by using the extended Koopmans' theorem.  相似文献   
13.
The specific and covalent labeling of fusion proteins with synthetic molecules opens up new ways to study protein function in the living cell. Here we present a novel method that allows for the specific and exclusive extracellular labeling of proteins on the surfaces of live cells with a large variety of synthetic molecules including fluorophores, protein ligands, or quantum dots. The approach is based on the specific labeling of fusion proteins of acyl carrier protein with synthetic molecules through post-translational modification catalyzed by phosphopantetheine transferase. The specificity and versatility of the labeling should allow it to become an important tool for studying and manipulating cell surface proteins and for complementing existing approaches in cell surface engineering.  相似文献   
14.
The unexpected but facile preparation of the silver salt of the least coordinating [(RO)3Al‐F‐Al(OR)3]? anion (R=C(CF3)3) by reaction of Ag[Al(OR)4] with one equivalent of PCl3 is described. The mechanism of the formation of Ag[(RO)3Al‐F‐Al(OR)3] is explained based on the available experimental data as well as on quantum chemical calculations with the inclusion of entropy and COSMO solvation enthalpies. The crystal structures of (RO)3Al←OC4H8, Cs+[(RO)2(Me)Al‐F‐Al(Me)(OR)2]?, Ag(CH2Cl2)3+[(RO)3Al‐F‐Al(OR)3]? and Ag(η2‐P4)2+[(RO)3Al‐F‐Al(OR)3]? are described. From the collected data it will be shown that the [(RO)3Al‐F‐Al(OR)3]? anion is the least coordinating anion currently known. With respect to the fluoride ion affinity of two parent Lewis acids Al(OR)3 of 685 kJ mol?1, the ligand affinity (441 kJ mol?1), the proton and copper decomposition reactions (?983 and ?297 kJ mol?1) as well as HOMO level and HOMO–LUMO gap and in comparison with [Sb4F21]?, [Sb(OTeF5)6]?, [Al(OR)4]? as well as [B(RF)4]? (RF=CF3 or C6F5) the [(RO)3Al‐F‐Al(OR)3]? anion is among the best weakly coordinating anions (WCAs) according to each value. In contrast to most of the other cited anions, the [(RO)3Al‐F‐Al(OR)3] anion is available by a simple preparation in conventional inorganic laboratories. The least coordinating character of this anion was employed to clarify the question of the ground state geometry of the Ag(η2‐P4)2+ cation (D2h, D2 or D2d?). In agreement with computational data and NMR spectra it could be shown that the rotation along the Ag‐(P‐P‐centroid) vector has no barrier and that the structure adopted in the solid state depends on packing effects which lead to an almost D2h symmetric Ag(η2‐P4)2+ cation (0 to 10.6° torsion) for the more symmetrical [Al(OR)4]? anion, but to a D2 symmetric Ag(η2‐P4)2+ cation with a 44° twist angle of the two AgP2 planes for the less symmetrical [(RO)3Al‐F‐Al(OR)3]? anion. This implies that silver back bonding, suggested by quantum chemical population analyses to be of importance, is only weak.  相似文献   
15.
A three‐dimensional finite element method is applied to the ground states of the symmetric and asymmetric atomic helium trimers 4He3 and 4He23He. Three different He–He interaction potentials of hard‐core nature were studied. Two extrapolation procedures based on the convergence properties of the finite element method are investigated. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   
16.
Correction for ‘Expanding medicinal chemistry into 3D space: metallofragments as 3D scaffolds for fragment-based drug discovery’ by Christine N. Morrison et al., Chem. Sci., 2020, 11, 1216–1225, https://doi.org/10.1039/C9SC05586J.

The authors regret that in the original article, inhibitory values reported for some metallofragments were incorrect. Unfortunately, DMSO stock solutions of reportedly active ferrocene-based metallofragments were found to decompose in the presence of light, which resulted in inaccurate inhibition values. The authors maintain that the core conclusions of the paper are accurate and the utility of three-dimensional metal complexes for fragment-based drug discovery has merit.In the original article, ‘class A’ metallofragments are comprised of ferrocene derivatives (Fig. 1). Some of these ferrocene fragments (specifically those containing carbonyl groups) are reported as broadly inhibiting several protein targets. It was noted in our original report that the ferrocene scaffold was likely promiscuous due to its lipophilicity and potential redox activity, but that it might still serve as a useful metallofragment for fragment-based drug discovery (FBDD) campaigns. However, re-evaluation of these compounds against the influenza endonuclease (PAN) failed to reproduce our original inhibition results for the class A metallofragments using freshly prepared stocks, indicating a problem with the materials used in the original study.Open in a separate windowFig. 1Chemical structures of class A metallofragments.Several compounds from class A were originally reported as having near complete (100%) inhibition against PAN endonuclease at an inhibitor concentration of 200 μM (and2).2). However, when re-evaluated under identical conditions, using freshly prepared DMSO stock solutions, inhibition was only observed with one fragment of this class (A22, Fig. 1), with the previously reported highly active fragments (A4, A7–A21,
CompoundA1A2A3A4A5A7A8A9A10A11
Reported12 ± 6<1<145 ± 148 ± 7103 ± 5103 ± 453 ± 546 ± 790 ± 5
Corrected3 ± 10n.d.18 ± 36 ± 321 ± 59 ± 310 ± 54 ± 216 ± 410 ± 7
Open in a separate windowan.d. = not determined.
CompoundA12A14A15A16A17A18A19A20A21A22
Reported66 ± 526 ± 655 ± 719 ± 8100 ± 4107 ± 632 ± 880 ± 410 ± 1688 ± 9
Corrected9 ± 410 ± 518 ± 115 ± 65 ± 3<111 ± 9<1< 193 ± 1
Open in a separate windowReported and re-evaluated percent inhibition values of representative metallofragments against PAN endonuclease at 200 μM inhibitor concentration. Each compound was tested in triplicate from either two or three independent experimentsa
CompoundA1B1C1D1E1F1G1
Reported12 ± 64 ± 670 ± 2320 ± 1118 ± 982 ± 516 ± 6
Re-evaluated<519 ± 875 ± 1114 ± 9<510 ± 14<5
Open in a separate windowan.d. = not determined.
CompoundH1I1J1K1L1M1DPBA
Reported31 ± 626 ± 725 ± 699 ± 312 ± 426 ± 4n.d.
Re-evaluated25 ± 9<541 ± 683 ± 330 ± 854 ± 597 ± 1
Open in a separate windowIn the original article, one representative member of each metallofragment class was assessed for stability by NMR. Compound A1 (ferrocene) proved stable in DMSO and class A metallofragments were stored as DMSO stocks at −80 °C, but were not consistently protected from light. As noted above, many of the derivatives in class A contain a ferrocenyl carbonyl motif. It has been previously reported that ferrocenyl ketones can undergo photoaquation (λ > 280 nm) in wet DMSO to produce a monocyclopentadienyliron cation, the anionic ligand, and free cyclopentadiene.1 Suspecting issues with photostability, we dissolved several of the ferrocenyl fragments in DMSO-d6, exposed them to ambient room light (fluorescent light bulb), and monitored stability by NMR. Indeed, photoinstability was confirmed by the observance of free cyclopentadienyl peaks appearing in the 1H NMR spectrum (Fig. 2). It should also be noted that while the fresh stock of A22 retained significant inhibition against PAN, it also exhibits sensitivity to light in DMSO.Open in a separate windowFig. 2Compound A7 in DMSO-d6 (left) and after exposure to ambient light for 24 h (right) demonstrating the photoinstability of this compound.Based on these findings, the authors regret that the inhibitory data associated with class A metallofragments are incorrect, likely because of photodecomposition of these ferrocene derivatives. To confirm if other classes of metallofragments were correctly reported, a representative member of each class was evaluated against PAN endonuclease at an inhibitor concentration of 200 μM using freshly prepared DMSO stocks. Each compound was tested in triplicate in two or three independent experiments, with the addition of 2,4-dioxo-4-phenylbutanoic acid (DPBA) as a positive control.2 Fortunately, these experiments largely reproduced our original findings. Although several fragments showed slightly greater activity upon re-evaluation (J1, L1, M1, Fig. 3), only one fragment initially identified as a hit (>50% inhibition) failed to show activity when re-examined (F1, Fig. 3). Other than compound F1, all selected compounds designated as ‘hits’ (>50% inhibition) retained a high level of inhibitory activity upon re-evaluation. Taken together, the authors believe the inaccuracies stemming from photostability issues are limited to class A compounds; however, these inaccuracies would include all other inhibition data reported for class A compounds, including assay data against other enzyme targets, IC50 values, and thermal shift assay (TSA) binding data. Furthermore, the hit rate against each target is likely lower than reported, with PAN having an adjusted hit rate of ∼28% (20/71).Open in a separate windowFig. 3Chemical structures of representative metallofragments from each class re-examined for inhibition activity against PAN endonuclease.The authors maintain that three-dimensional metallofragments represent a useful new line of inquiry for FBDD and our ongoing studies seek to further test this hypothesis. The core message of our original study – the ability of metallofragments to be useful scaffolds for FBDD that occupy hard-to-access three-dimensional chemical space – remains unchanged. However, as demonstrated by our error, the authors acknowledge that metallofragments may pose unique challenges that must be carefully considered and controlled for when using them in FBDD campaigns.The authors would like to take this opportunity to thank the readers who alerted them to the concerns regarding the inhibitory activities and allowed them to reinvestigate. Both the authors and the Royal Society of Chemistry appreciate their support.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   
17.
Tuning Ruthenium Carbene Complexes for Selective P−H Activation through Metal-Ligand Cooperation     
Dr. Kai-Stephan Feichtner  Dr. Lennart T. Scharf  Dr. Thorsten Scherpf  Dr. Bert Mallick  Nils Boysen  Prof. Dr. Viktoria H. Gessner 《Chemistry (Weinheim an der Bergstrasse, Germany)》2021,27(69):17351-17360
The use of iminophosphoryl-tethered ruthenium carbene complexes to activate secondary phosphine P−H bonds is reported. Complexes of type [(p-cymene)-RuC(SO2Ph)(PPh2NR)] (with R = SiMe3 or 4-C6H4−NO2) were found to exhibit different reactivities depending on the electronics of the applied phosphine and the substituent at the iminophosphoryl moiety. Hence, the electron-rich silyl-substituted complex undergoes cyclometallation or shift of the imine moiety after cooperative activation of the P−H bond across the M=C linkage, depending on the electronics of the applied phosphine. Deuteration experiments and computational studies proved that cyclometallation is initiated by the activation process at the M=C bond and triggered by the high electron density at the metal in the phosphido intermediates. Consistently, replacement of the trimethylsilyl (TMS) group by the electron-withdrawing 4-nitrophenyl substituent allowed the selective cooperative P−H activation to form stable activation products.  相似文献   
18.
Über die Intensitätsverhältnisse der Stark-Effekt-Komponenten der Wasserstofflinien     
Nils Ryde 《Zeitschrift für Physik A Hadrons and Nuclei》1938,109(1-2):108-120
  相似文献   
19.
Weak Arene Stabilization of Bulky Amido‐Germanium(II) and Tin(II) Monocations     
Jiaye Li  Christian Schenk  Florian Winter  Harald Scherer  Nils Trapp  Alexander Higelin  Sarah Keller  Rainer Pttgen  Ingo Krossing  Cameron Jones 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2012,124(38):9695-9699
  相似文献   
20.
Titelbild: Chemie und Biologie der Stimulatoren und Aktivatoren der löslichen Guanylatcyclase / Nicotinische Acetylcholinrezeptor‐Agonisten: ein Meilenstein für den modernen Pflanzenschutz / Polyurethane: vielseitige Materialien und nachhaltige Problemlöser für aktuelle Anforderungen (Angew. Chem. 36/2013)     
Markus Follmann  Nils Griebenow  Michael G. Hahn  Ingo Hartung  Franz‐Josef Mais  Joachim Mittendorf  Martina Schfer  Hartmut Schirok  Johannes‐Peter Stasch  Friederike Stoll  Alexander Straub  Peter Jeschke  Ralf Nauen  Michael Edmund Beck  Hans‐Wilhelm Engels  Hans‐Georg Pirkl  Reinhard Albers  Rolf W. Albach  Jens Krause  Andreas Hoffmann  Holger Casselmann  Jeff Dormish 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2013,125(36):9503-9503
  相似文献   
[首页] « 上一页 [1] 2 [3] [4] [5] [6] [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号