首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3343篇
  免费   187篇
  国内免费   18篇
化学   2571篇
晶体学   28篇
力学   82篇
数学   465篇
物理学   402篇
  2023年   26篇
  2022年   20篇
  2021年   66篇
  2020年   89篇
  2019年   90篇
  2018年   57篇
  2017年   56篇
  2016年   124篇
  2015年   82篇
  2014年   121篇
  2013年   147篇
  2012年   249篇
  2011年   302篇
  2010年   111篇
  2009年   86篇
  2008年   234篇
  2007年   201篇
  2006年   211篇
  2005年   192篇
  2004年   150篇
  2003年   124篇
  2002年   118篇
  2001年   30篇
  2000年   32篇
  1999年   21篇
  1998年   29篇
  1997年   26篇
  1996年   28篇
  1995年   33篇
  1994年   21篇
  1993年   28篇
  1992年   28篇
  1991年   26篇
  1990年   15篇
  1989年   19篇
  1988年   18篇
  1987年   21篇
  1985年   30篇
  1984年   30篇
  1983年   17篇
  1982年   36篇
  1981年   24篇
  1980年   24篇
  1979年   20篇
  1978年   23篇
  1977年   23篇
  1976年   19篇
  1975年   12篇
  1974年   10篇
  1973年   10篇
排序方式: 共有3548条查询结果,搜索用时 203 毫秒
131.
A mild and convenient synthesis for phosphonates using cesium carbonate (Cs2CO3), tetrabutylammonium iodide (TBAI) and DMF was developed at room temperature. Numerous dialkyl phosphites were screened using a diverse array of alkyl halides and these reaction conditions were found to be highly efficient producing various phosphonates exclusively in moderate to high yields.  相似文献   
132.
Caspase proteases are familiar targets in drug discovery. A common format for screening to identify caspase inhibitors employs fluorogenic or colorimetric tetra-peptide substrates in 96, 384, or 1536 -well microtiter plates. The primary motivation for increasing the number of wells per plate is to reduce the reagent cost per test and increase the throughput of HTS operations. There are significant challenges, however, to moving into or beyond the 1536-well format, such as submicroliter liquid handling, liquid evaporation, increased surface area-to-volume ratios, and the potential for artifacts and interference from small air-borne particles such as lint. Therefore, HTS scientists remain keenly interested in technologies that offer alternatives to the ever-shrinking microtiter plate well. Microfluidic assay technology represents an attractive option that, in theory, consumes only subnanoliter volumes of reagents per test. We have successfully employed a microfluidic assay technology in fluorogenic screening assays for several caspase isoforms utilizing the Caliper Technologies Labchip platform. Caspase-3 is used as a representative case to describe microfluidic assay development and initial high-throughput screening results. In addition, microfluidic screening and plate-based screening are compared in terms of reagent consumption, data quality, and ease of operation.  相似文献   
133.
Monte Carlo simulations of the effects of weak magnetic fields on the recombination of interacting radical pairs undergoing free diffusion in solution have been performed, with the aim of determining the influence on the low field effect of the magnetic dipolar coupling between the radicals. The suppression of singlet-triplet interconversion in the radical pair by the dipolar interaction is found to be pronounced at magnetic field strengths comparable to the hyperfine interactions in the radicals, to the extent that the low field effect is completely abolished. The averaging of the dipolar coupling by the translational diffusion of the radicals around one another is relatively efficient in the presence of strong magnetic fields but becomes ineffective in weak applied fields where the strength of the dipolar interaction is independent of the orientation of the inter-radical vector. Low field effects are only likely to be observed if the motion of the radical pair is restricted in some way so as to increase the likelihood that, having separated to the large distance required for the dipolar interaction to have a negligible effect, the radicals subsequently encounter and have the opportunity to recombine.  相似文献   
134.
The excited states of CO adsorbed on the Pt(111) surface are studied using a time-dependent density functional theory formalism. To reduce the computational cost, electronic excitations are computed within a reduced single excitation space. Using cluster models of the surface, excitation energies are computed for CO in the on-top, threefold, and bridge binding sites. On adsorption, there is a lowering of the 5sigma orbital energy. This leads to a large blueshift in the 5sigma- -> pi(CO*) excitation energy for all adsorption sites. The 1pi and 4sigma orbital energies are lowered to a lesser extent, and smaller shifts in the corresponding excitation energies are predicted. For the larger clusters, pi* excitations at lower energies are observed. These transitions correspond to excitations to virtual orbitals of pi* character which lie below the pi* orbitals of gas phase CO. These orbitals are associated predominantly with the metal atoms of the cluster. The excitation energies are also found to be sensitive to changes in the adsorption geometry. The electronic spectrum of CO on Pt(111) is simulated and the assignment of the bands observed in experimental electron energy loss spectroscopy discussed.  相似文献   
135.
The results of kinetic, deuterium-labeling, and low-temperature NMR studies have established a mechanism for the palladium-catalyzed cyclization/hydrosilylation of dimethyl diallylmalonate (1) with triethylsilane involving rapid, irreversible conversion of the palladium silyl complex [(phen)Pd(SiEt(3))(NCAr)](+) [BAr(4)](-) [Ar = 3,5-C(6)H(3)(CF(3))(2)] (4b) and 1 to the palladium 5-hexenyl chelate complex [(phen)Pd[eta(1),eta(2)-CH(CH(2)SiEt(3))CH(2)C(CO(2)Me)(2)CH(2)CH=CH(2)]](+) [BAr(4)](-) (5), followed by intramolecular carbometalation of 5 to form the palladium cyclopentylmethyl complex trans-[(phen)Pd[CH2CHCH2C(CO2Me)2CH2CHCH2SiEt3](NCAr)]+ [BAr4]- (6), and associative silylation of 6 to release 3 and regenerate 4b.  相似文献   
136.
A novel method is described for measuring the deformability of red blood cells (RBCs) in tubing whose diameters approximate forces encountered in vivo. Here, RBCs from rabbits are loaded into a 50 cm section of 75 microm id microbore tubing and connected to a syringe pump. This section of tubing is then connected to a 15 cm section of 25 microm id tubing. As buffer is pumped through the flow system, the RBCs are evacuated from both sections of tubing. However, the inability of the RBCs to move freely through the 25 mirom id section of tubing results in a buildup of cells at the inlet of this portion of tubing. The continued force output by the syringe pump results in a deformation of the RBCs until all of the cells are eventually evacuated from the flow system. It was found that a measurement of the time required to reach half of the maximum pressure (1/2 P(max)) may be used as an indicator of the RBC deformability. For a given sample, a simple buffer results in less time to reach 1/2 P(max) (6.9 +/- 0.2 s) than deformable RBCs (21.6 +/- 0.8 s). To verify that the increased amount of time to reach 1/2 P(max) is indeed due to the RBCs, various hematocrits of an RBC sample were investigated and, as expected, it was found that a 12% RBC hematocrit had a higher 1/2 P(max) value (26.0 s +/- 2.2 s) when compared to a 7% hematocrit (19.1 +/- 0.3 s). In addition, RBCs chemically stiffened with glutaraldehyde were shown to be 25% less deformable than normal RBCs. Finally, a study was performed to examine the relationship between RBC deformability and ATP release and it was found that ATP release increased as a function of RBC deformability. This method greatly simplifies deformability measurements, employing only a syringe pump and microbore tubing, and may lead to a more complete understanding of the physiological significance of erythrocyte deformability.  相似文献   
137.
The optimized geometries, adiabatic electron affinities, and IR-active vibrational frequencies have been predicted for the long linear carbon chains HC(2n)H. The B3LYP density functional combined with the DZP basis set was used in this theoretical study. The computed physical properties are discussed. The predicted electron affinities form a remarkably regular sequence: 1.78 (HC(12)H), 2.08 (HC(14)H), 2.32 (HC(16)H), 2.53 (HC(18)H), 2.69 (HC(20)H), 2.83 (HC(22)H), and 2.95 eV (HC(24)H). The predicted structures display an alternating triple and very short single bond pattern, with the degree of bond alternation significantly less for the radical anions.  相似文献   
138.
Three standardised, capillary zone electrophoresis-electrospray ionisation mass spectrometry (CZE-ESI-MS) methods were developed for the analysis of six drug candidates and their respective process-related impurities comprising a total of 22 analytes with a range of functional groups and lipophilicities. The selected background electrolyte conditions were found to be: 60/40 v/v 10 mM ammonium formate pH 3.5/organic, 60/40 v/v 10 mM ammonium acetate pH 7.0/organic and 10 mM piperidine, pH 10.5, where the organic solvent is 50/50 v/v methanol/acetonitrile. The coaxial sheath flow consisted of either 0.1% v/v formic acid in 50/50 v/v methanol/water, or 10 mM ammonium acetate in 50/50 v/v methanol/water, depending on the mixture being analysed. Factor analysis and informational theory were used to quantify the orthogonality of the methods and predict their complementarities. The three selected CZE-ESI-MS methods allowed the identification of 21 out of 22 of all the drug candidates and their process-related impurities and provided orthogonality with four established high-performance liquid chromatography-mass spectrometry (HPLC-MS) methods. These methodologies therefore form the basis of a generic approach to impurity profiling of pharmaceutical drug candidates and can be applied with little or no analytical method development, thereby offering significant resource and time savings.  相似文献   
139.
The rotational mobilities of small solute molecules encapsulated in tetramethyl orthosilicate (TMOS) sol-gels have been investigated by EPR spectroscopy of encapsulated nitroxide probes and by high-resolution NMR spectroscopic measurements of transferred NOE's (trNOE's), of T(1)'s, and of T(1)'s in the rotating frame (T(1)rho). The two spectroscopic methods are sensitive to motions on different time scales and hence, are nicely complementary. Suites of neutral, positively, and negatively charged nitroxide probes (EPR) and of simple diamagnetic small molecules (NMR) were selected to disclose influences of electrostatic interactions with the sol-gel walls and to probe the presence of multiple populations of molecules in distinct regions of the sol-gel pores. For neutral and negatively charged solute probes, both techniques disclose a single population with a significantly increased average rotational correlation time, which we interpret at least in part as resulting from exchange between free-volume and transiently immobilized surface populations. The electrostatic attraction between cationic probes and the negatively charged sol-gel walls causes the positively charged probes to be more effectively immobilized and/or causes a greater percentage of probes to undergo this transient immobilization. The EPR spectra directly disclose a population of cationic probes which are immobilized on the X-band EPR time scale: tau(c) greater than or approximately equal 10(-7) s. However, NMR measurements of trNOE's and of T(1)rho demonstrate that this population does exchange with the free-volume probes on the slower time scale of NMR. This approach is equally applicable to the study of solutes within other types of confined spaces, as well.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号