首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   5篇
化学   91篇
晶体学   1篇
数学   1篇
物理学   7篇
  2023年   1篇
  2022年   1篇
  2020年   4篇
  2019年   2篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   5篇
  2011年   9篇
  2010年   6篇
  2009年   7篇
  2008年   12篇
  2007年   6篇
  2006年   11篇
  2005年   5篇
  2004年   5篇
  2003年   5篇
  2002年   5篇
  1997年   2篇
  1996年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
排序方式: 共有100条查询结果,搜索用时 187 毫秒
51.
Plasma Chemistry and Plasma Processing - The development of microdischarges and the inception dynamics of subsequent microdischarges in an electrode arrangement consisting of a metal pin and a...  相似文献   
52.
The effects of quantal fluctuations of the magnetic field in a system of structureless interacting fermions generating self-organized macroscopic and periodic magnetic structures are analysed. The analysis is made by using the functional integration methods.The autor is grateful to Professor M. Noga for many enlightening conversations and useful advices.  相似文献   
53.
The mechanistic details of 1,2- and 1,4-cycloaddition reactions of acetone, CO(2), and CS(2) to isostructural iridiabenzene, iridiapyrylium, and iridiathiabenzene complexes, as well as their rhodium analogues, were elucidated by density functional theory (DFT) at the PCM/mPW1K/SDB-cc-pVDZ//mPW1K/SDD level of theory. The calculated reaction profiles concur with reported experimental observations. It was found that the first complex reacts via a concerted reaction mechanism, while the latter two react by a stepwise mechanism. Several factors affecting the reaction mechanisms and outcome were identified. They include the composition and size of the metal-aromatic ring, the length of the substrate C=X (X = O, S) bond, the geometry of the product, the symmetry of the frontier molecular orbitals, and the type of reaction mechanism involved.  相似文献   
54.
DFT calculations were used to reveal the unexpected reactivity and mechanism of the addition of acetone to metallabenzene, metallapyrylium and metallathiabenzene complexes of iridium.  相似文献   
55.
This contribution describes the reactivity of a zero‐valent palladium phosphine complex with substrates that contain both an aryl halide moiety and an unsaturated carbon–carbon bond. Although η2‐coordination of the metal center to a C?C or C?C unit is kinetically favored, aryl halide bond activation is favored thermodynamically. These quantitative transformations proceed under mild reaction conditions in solution or in the solid state. Kinetic measurements indicate that formation of η2‐coordination complexes are not nonproductive side‐equilibria, but observable (and in several cases even isolated) intermediates en route to aryl halide bond cleavage. At the same time, DFT calculations show that the reaction with palladium may proceed through a dissociation–oxidative addition mechanism rather than through a haptotropic intramolecular process (i.e., ring walking). Furthermore, the transition state involves coordination of a third phosphine to the palladium center, which is lost during the oxidative addition as the C?halide bond is being broken. Interestingly, selective activation of aryl halides has been demonstrated by adding reactive aryl halides to the η2‐coordination complexes. The product distribution can be controlled by the concentration of the reactants and/or the presence of excess phosphine.  相似文献   
56.
The intramolecular gas‐phase reactivity of four oxoiron(IV) complexes supported by tetradentate N4 ligands ( L ) has been studied by means of tandem mass spectrometry measurements in which the gas‐phase ions [FeIV(O)( L )(OTf)]+ (OTf=trifluoromethanesulfonate) and [FeIV(O)( L )]2+ were isolated and then allowed to fragment by collision‐induced decay (CID). CID fragmentation of cations derived from oxoiron(IV) complexes of 1,4,8,11‐tetramethyl‐1,4,8,11‐tetraazacyclotetradecane (tmc) and N,N′‐bis(2‐pyridylmethyl)‐1,5‐diazacyclooctane ( L 8Py2) afforded the same predominant products irrespective of whether they were hexacoordinate or pentacoordinate. These products resulted from the loss of water by dehydrogenation of ethylene or propylene linkers on the tetradentate ligand. In contrast, CID fragmentation of ions derived from oxoiron(IV) complexes of linear tetradentate ligands N,N′‐bis(2‐pyridylmethyl)‐1,2‐diaminoethane (bpmen) and N,N′‐bis(2‐pyridylmethyl)‐1,3‐diaminopropane (bpmpn) showed predominant oxidative N‐dealkylation for the hexacoordinate [FeIV(O)( L )(OTf)]+ cations and predominant dehydrogenation of the diaminoethane/propane backbone for the pentacoordinate [FeIV(O)( L )]2+ cations. DFT calculations on [FeIV(O)(bpmen)] ions showed that the experimentally observed preference for oxidative N‐dealkylation versus dehydrogenation of the diaminoethane linker for the hexa‐ and pentacoordinate ions, respectively, is dictated by the proximity of the target C? H bond to the oxoiron(IV) moiety and the reactive spin state. Therefore, there must be a difference in ligand topology between the two ions. More importantly, despite the constraints on the geometries of the TS that prohibit the usual upright σ trajectory and prevent optimal σCH–σ* overlap, all the reactions still proceed preferentially on the quintet (S=2) state surface, which increases the number of exchange interactions in the d block of iron and leads thereby to exchange enhanced reactivity (EER). As such, EER is responsible for the dominance of the S=2 reactions for both hexa‐ and pentacoordinate complexes.  相似文献   
57.
Fundamental insights into the factors that control the properties and structure of gold nanoparticle (AuNP) based assemblies enable the design and construction of new materials. The dimensions (shape and size) and the optical properties of AuNP assemblies are affected by the electronic properties of the organic cross-linker and the nature of the AuNPs.  相似文献   
58.
Plug and play: The mimicking of integrated circuits by using two individual monolayers (molecular chips) is shown. These monolayers can be individually addressed using identical inputs. Upon combination of their optical outputs, the input/output characteristics of a molecular encoder is obtained. Since the encoder functionality is only displayed when both chips are active, the device behaves according to a plug-and-play principle (In=input; see picture).  相似文献   
59.
Electrospray ionization of dilute aqueous solutions of copper(II) chloride‐containing traces of pyridine (py) as well as ammonia permits the generation of the gaseous ions (py)2Cu+ and (py)2CuCl+, of which the latter is a formal copper(II) compound, whereas the former contains copper(I). Collision‐induced dissociation of the mass‐selected ions in an ion‐trap mass spectrometer (IT‐MS) leads to a loss of pyridine from (py)2Cu+, whereas an expulsion of atomic chlorine largely prevails for (py)2CuCl+. Theoretical studies using density functional theory predict a bond dissociation energy (BDE) of BDE[(py)2Cu+ ‐Cl] = 125 kJ mol?1, whereas the pyridine ligand is bound significantly stronger, i.e. BDE[(py)CuCl+ ‐py] = 194 kJ mol?1 and BDE[(py)Cu+ ‐py] = 242 kJ mol?1. The results are discussed with regard to the influence of the solvation on the stability of the CuI/CuII redox couple. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
60.
The immobilization of metal nanoparticles (NPs) with molecular control over their organization is challenging. Herein, we report the formation of molecularly cross‐linked AuNP assemblies using a layer‐by‐layer approach. We observed four types of assemblies: 1) small aggregates of individual AuNPs, 2) large aggregates of individual AuNPs, 3) networks of fused AuNPs, and 4) gold islands. Interestingly, these assemblies with the different cross‐linkers and capping layers represent different stages in the complete fusion of AuNPs to afford islands of continuous gold. We demonstrate that the stability toward fusion of the nanoparticles of the on‐surface structures can be controlled by the reactivity of the cross‐linkers and the hydrophilicity/hydrophobicity of the nanoparticles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号