首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   253篇
  免费   5篇
化学   134篇
晶体学   5篇
力学   33篇
数学   41篇
物理学   45篇
  2023年   1篇
  2022年   7篇
  2021年   9篇
  2020年   10篇
  2019年   10篇
  2018年   14篇
  2017年   11篇
  2016年   17篇
  2015年   6篇
  2014年   14篇
  2013年   30篇
  2012年   26篇
  2011年   19篇
  2010年   10篇
  2009年   15篇
  2008年   8篇
  2007年   10篇
  2006年   8篇
  2005年   9篇
  2004年   2篇
  2003年   7篇
  2002年   1篇
  2001年   2篇
  2000年   3篇
  1994年   1篇
  1993年   2篇
  1989年   2篇
  1986年   1篇
  1984年   1篇
  1981年   2篇
排序方式: 共有258条查询结果,搜索用时 312 毫秒
11.
A series of acrylic copolymers containing silyl pendant groups was prepared by free radical cross-linking copolymerization. Me3Si, Et3Si, and Ph3Si together with cubane-1,4-dicarboxylic acid (CDA) were covalently linked with 2-hydroxyethyl methacrylate (HEMA). CDA linked to two HEMA group is the cross-linking agent (CA). Free radical cross-linking copolymerization of the methacrylic acid (MAA) and organosilyl monomers with two different molar ratios of CA was carried out at 60–70°C. The compositions of the cross-linked three-dimensional polymers were determined by FT-IR spectroscopy. The glass transition temperature of the network polymers was determined calorimetrically. Equilibrium swelling studies were carried out in enzyme-free simulated gastric and intestinal fluids (SGF and SIF, respectively). A model hydrophobic drug, the steroid hormone estradiol, was entrapped in these gels, and the in vitro release profiles were established separately in both SGF (pH 1) and SIF (pH 7.4). Incorporation of silyl groups in a new macromolecule system modified network polymers for drug delivery.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   
12.
Danafar  Hossein  Hamidi  Mehrdad 《Chromatographia》2013,76(23):1667-1675

A selective and highly sensitive high performance liquid chromatography-electrospray ionization mass spectrometry method has been developed for determination of ezetimibe concentrations in human plasma. Ezetimibe was extracted from plasma with ethyl acetate followed by evaporation of the organic layer and, then, reconstitution of the residue in mobile phase before injection to chromatograph. The mobile phase consisted of acetonitrile-ammonium acetate (10 mM, pH 3.0), 75:25 (v/v). An aliquot of 10 μL was chromatographically analyzed on a prepacked Zorbax XDB-ODS C18 column (2.1 × 100 mm, 3.5 micron). Detection of analytes was achieved by mass spectrometry with atmospheric pressure chemical ionization (APCI) interface in the negative ion mode operated under the multiple-reaction monitoring mode (m/z transition: ezetimibe 408–271). Standard curves were linear (r = 0.998) over the wide ezetimibe concentration range of 0.05–30.0 ng mL−1 with acceptable accuracy and precision. The limit of detection was 0.02 ng mL−1. The validated LC–APCI–MS method has been used successfully throughout a bioequivalence study on an ezetimibe generic product in 24 healthy male volunteers.

  相似文献   
13.
The aim of this research is to achieve the synthesis of a novel mono azo disperse dye containing both a β‐naphthyl acetate group and carboxylic acid ester group and application on PET fabric. In this study the dyeing properties have also been investigated. The synthesized dye was characterized using UV‐Vis, FTIR, 1H NMR and 13C NMR spectroscopic techniques. To investigate alkali‐clearability, both alkali‐hydrolysis behavior and the effect of its fastness properties with regard to PET fabric were examined. This dye showed a reasonable level of hydrolysis under relatively mild alkaline conditions. The application of the dye to PET fabric showed good leveling and building up properties. Estimating fastness properties of the dyed fabric showed excellent wash, rubbing fastness, good light and sublimation fastness. The results furthermore displayed that the synthesized dye offers the option of alkali‐clearing process over that of a conventional reduction‐clearing process. Therefore, the value of Chemical Oxygen Demand (COD), Biological Oxygen Demand (BOD) and water pollution as well as the expenditure of production were decreased.  相似文献   
14.
We investigated theoretically the effects of the cross‐stream migration and the local average orientation of rodlike particles on the shape‐based separation using field‐flow fractionation. The separation behavior was analyzed by comparing the retention ratios of spheres and rods. The retention ratio of a rod was evaluated through the derivation of its cross‐sectional concentration profile by considering the rod migration and the local average orientation. Our study in various flow conditions showed that the rod migration, caused by the hydrodynamic interaction with a wall, can affect the separation behavior as a lift‐hyperlayer mode. We also demonstrated that the local average orientation, which is a function of a local shear rate and a rotational diffusivity, results in the transverse diffusivity that is different from its perpendicular diffusivity. These results suggest that the experimental separation behaviors of rods in field‐flow fractionation may not be fully explained by the current theory based on the normal mode and the steric mode. We also characterized each condition where one of the normal mode, the steric mode of spheres, and the lift‐hyperlayer mode of rods is dominant.  相似文献   
15.

Safety issues of Li-ion batteries imposed by unfavorable thermal behavior accentuate the need for efficient thermal management systems to prevent the runaway conditions. To that end, a hybrid thermal management system is designed and further investigated numerically and experimentally in the present study. The passive cooling system is fabricated by saturating copper foam with paraffin as the phase change material (PCM) and integrated with an active cooling system with alumina nanofluid as the coolant fluid. Results for various Reynolds numbers and different heating powers indicate that the hybrid nanofluid cooling system can successfully fulfill safe operation of the battery during stressful operating conditions. The maximum time in which all PCM field is changed to the liquid phase is defined as the onset of the stressful conditions. Therefore, the start time of stressful conditions at 41 W and Re 420 is increased from 3700 s with nanofluid composed of 1% volume fraction nanoparticles (VF-1%) to 4600 s with nanofluid VF-2% during high current discharge rates. Nanofluid cooling extends the operating time of the battery in comparison with the water-based cooling system with 200-s (nanofluid with volume fraction of 1%) and 900-s (nanofluid with volume fraction of 2%) increases in operating time at Reynolds of 420. Using nanofluid, instead of water, postpones the onset of paraffin phase transition effectively and prolongs its melting time which consequently leads to a decrease in the rate of temperature rise.

  相似文献   
16.
Input design has a dominant role in developing the dynamic model of an autonomous underwater vehicle (AUV) through system identification. Optimal input design is the process of generating informative inputs that can be used to provide a good-quality dynamic model of AUV. In this paper, amplitude-modulated pseudo-random binary signal (APRBS) inputs are optimally designed in order to estimate the hydrodynamic derivatives of an AUV’s nonlinear dynamic model. The input controls are designed so as to minimize uncertainty in estimating hydrodynamic derivatives. The employed approach can design multiple inputs and apply constraints on an AUV system’s inputs and outputs. The genetic algorithm is utilized to solve the constraint optimization problem. The presented algorithm is used for designing the input signals of Hydrolab300 AUV, and the estimation obtained by these inputs is compared with that of zigzag maneuver. According to the results, the designed APRBS inputs improve the uncertainties that exist in estimating hydrodynamic derivatives better than zigzag inputs.  相似文献   
17.
In this paper, a new channel drop filter in two dimensional photonic crystals with mirror cavities is proposed. In the structure, three cavities are used. One is used for a resonant tunneling-based channel drop filter. The others are used to realize reflection feedback in the bus waveguide, which consists of a point defect micro-cavity side-coupled to a waveguide. The simulation results by using the finite-difference time-domain method conclude 98% output efficiency.  相似文献   
18.
The current paper proposes a technique for the numerical solution of Burgers equations. The method is based on finite difference formula combined with the Galerkin method, which uses the interpolating scaling functions. Several test problems are given, and the numerical results are reported to show the accuracy and efficiency of the new algorithm. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
19.
Hirshfeld surfaces and two‐dimensional fingerprint plots are used to analyse the intermolecular interactions in two new phosphorothioic triamide structures, namely N,N′,N′′‐tris(3,4‐dimethylphenyl)phosphorothioic triamide acetonitrile hemisolvate, P(S)[NHC6H3‐3,4‐(CH3)2]3·0.5CH3CN or C24H30N3PS·0.5CH3CN, (I), and N,N′,N′′‐tris(4‐methylphenyl)phosphorothioic triamide–3‐methylpiperidinium chloride (1/1), P(S)[NHC6H4(4‐CH3)]3·[3‐CH3‐C5H9NH2]+·Cl or C21H24N3PS·C6H14N+·Cl, (II). The asymmetric unit of (I) consists of two independent phosphorothioic triamide molecules and one acetonitrile solvent molecule, whereas for (II), the asymmetric unit is composed of three components (molecule, cation and anion). In the structure of (I), the different components are organized into a six‐molecule aggregate through N—H...S and N—H...N hydrogen bonds. The components of (II) are aggregated into a two‐dimensional array through N—H...S and N—H...Cl hydrogen bonds. Moreover, interesting features of packing arise in this structure due to the presence of a double hydrogen‐bond acceptor (the S atom of the phosphorothioic triamide molecule) and of a double hydrogen‐bond donor (the N—H unit of the cation). For both (I) and (II), the full fingerprint plot of each component is asymmetric as a consequence of the presence of three fragments. These analyses reveal that H...H interactions [67.7 and 64.3% for the two symmetry‐independent phosphorothioic triamide molecules of (I), 30.7% for the acetonitrile solvent of (I), 63.8% in the phosphorothioic triamide molecule of (II) and 62.9% in the 3‐methylpiperidinium cation of (II)] outnumber the other contacts for all the components in both structures, except for the chloride anion of (II), which only receives the Cl...H contact. The phosphorothioic triamide molecules of both structures include unsaturated C atoms, thus presenting C...H/H...C interactions: 17.6 and 21% for the two symmetry‐independent phosphorothioic triamide molecules in (I), and 22.7% for the phosphorothioic triamide molecule of (II). Furthermore, the N—H...S hydrogen bonds in both (I) and (II), and the N—H...Cl hydrogen bonds in (II), are the most prominent interactions, appearing as large red spots on the Hirshfeld surface maps. The N...H/H...N contacts in structure (I) are considerable, whereas for (II), they give a negligible contribution to the total interactions in the system.  相似文献   
20.
In this paper, we study the flow of a linearly viscous fluid and a granular solid, consisting of many particles, situated between two parallel plates rotating about different axes. Flow in orthogonal rheometers has been studied for many viscoelastic fluids so that their rheological properties can be measured. The mixture is modeled using the theory of interacting continua, and constitutive relations for the fluid phase, the granular phase, and the interaction forces are provided. For a very special case, an analytical solution to the equations of motion is also provided.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号