首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
化学   6篇
数学   1篇
物理学   15篇
  2015年   1篇
  2013年   2篇
  2011年   2篇
  2008年   1篇
  2006年   1篇
  2004年   1篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1976年   1篇
排序方式: 共有22条查询结果,搜索用时 0 毫秒
21.
The kinetics of hydrolysis at medium acid strength (pH interval 2-5) of a series of phenylsulfamate esters 1 have been studied and they have been found to react by an associative S(N)2(S) mechanism with water acting as a nucleophile attacking at sulfur, cleaving the S-O bond with simultaneous formation of a new S-O bond to the oxygen of a water molecule leading to sulfamic acid and phenol as products. In neutral to moderate alkaline solution (pH ≥ ~ 6-9) a dissociative (E1cB) route is followed that involves i) ionization of the amino group followed by ii) unimolecular expulsion of the leaving group from the ionized ester to give N-sulfonylamine [HN=SO(2)] as an intermediate. In more alkaline solution further ionization of the conjugate base of the ester occurs to give a dianionic species which expels the aryloxide leaving group to yield the novel N-sulfonylamine anion [(-)N=SO(2)]; in a final step, rapid attack of hydroxide ion or a water molecule on it leads again to sulfamic acid. A series of substituted benzyl 4-nitrophenylsulfamate esters 4 were hydrolysed in the pH range 6.4-14, giving rise to a Hammett relationship whose reaction constant is shown to be consistent with the E1cB mechanism.  相似文献   
22.
ClpP is a cylindrical serine protease whose ability to degrade proteins is regulated by the unfoldase ATP-dependent chaperones. ClpP on its own can only degrade small peptides. Here, we used ClpP as a target in a high-throughput screen for compounds, which activate the protease and allow it to degrade larger proteins, hence, abolishing the specificity arising from the ATP-dependent chaperones. Our screen resulted in five distinct compounds, which we designate as Activators of Self-Compartmentalizing Proteases 1 to 5 (ACP1 to 5). The compounds are found to stabilize the ClpP double-ring structure. The ACP1 chemical structure was considered to have drug-like characteristics and was further optimized to give analogs with bactericidal activity. Hence, the ACPs represent classes of compounds that can activate ClpP and that can be developed as potential novel antibiotics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号