首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   451篇
  免费   18篇
化学   390篇
晶体学   2篇
力学   2篇
数学   6篇
物理学   69篇
  2022年   4篇
  2021年   8篇
  2020年   11篇
  2019年   11篇
  2018年   4篇
  2016年   6篇
  2015年   11篇
  2014年   10篇
  2013年   19篇
  2012年   22篇
  2011年   35篇
  2010年   15篇
  2009年   17篇
  2008年   19篇
  2007年   13篇
  2006年   26篇
  2005年   14篇
  2004年   10篇
  2003年   9篇
  2002年   11篇
  2001年   9篇
  2000年   12篇
  1999年   8篇
  1997年   4篇
  1994年   6篇
  1993年   3篇
  1992年   6篇
  1991年   4篇
  1990年   9篇
  1989年   4篇
  1988年   9篇
  1987年   12篇
  1986年   6篇
  1985年   16篇
  1984年   11篇
  1983年   5篇
  1982年   6篇
  1981年   7篇
  1980年   6篇
  1979年   6篇
  1978年   6篇
  1977年   5篇
  1976年   4篇
  1975年   3篇
  1973年   2篇
  1968年   2篇
  1967年   3篇
  1966年   5篇
  1929年   2篇
  1927年   2篇
排序方式: 共有469条查询结果,搜索用时 218 毫秒
461.
This report describes the synthesis and enzyme activities of multilayered protein nanotubes with an α-glucosidase (αGluD) interior surface. The nanotubes were prepared by using an alternating layer-by-layer (LbL) assembly of human serum albumin (HSA) and oppositely charged poly-L-arginine (PLA) into a track-etched polycarbonate (PC) membrane (pore size=400 nm) followed by addition of αGluD as the last layer of the wall. Subsequent dissolution of the PC template yielded (PLA/HSA)(2)PLA/αGluD nanotubes. SEM measurements revealed the formation of uniform hollow cylinders with (413±17) nm outer diameter and (52±3) nm wall thickness. In aqueous media, the nanotubes captured a fluorogenic glucopyranoside, 4-methyl-umbelliferyl-α-D-glucopyranoside (MUGlc), into their one-dimensional pore space and hydrolyzed the substrate efficiently to form α-D-glucose. We determined the enzyme parameters (Michaelis constant, K(M), and catalytic constant, k(cat), values) of the protein nanotubes. The several-micrometers-long cylinders were of sufficient length to be spun down by centrifugation at 4000 g, so the product could therefore be easily separated. Similar biocatalysts were prepared by complexation of biotinylated-αGluD into HSA-based nanotubes bearing a single avidin layer as an internal surface. The obtained hybrid nanotubes also exhibited the same enzyme activity for the MUGlc hydrolysis.  相似文献   
462.
A temperature variable magnetic resonance imaging (MRI) system has been developed using a 1.0 T permanent magnet. A permanent magnet, gradient coils, radiofrequency coil, and shim coil were installed in a temperature variable thermostatic bath. First, the variation in the magnetic field inhomogeneity with temperature was measured. The inhomogeneity has a specific spatial symmetry, which scales linearly with temperature, and a single-channel shim coil was designed to compensate for the inhomogeneity. The inhomogeneity was drastically reduced by shimming over a wide range of temperature from −5 °C to 45 °C. MR images of an okra pod acquired at different temperatures demonstrated the high potential of the system for visualizing thermally sensitive properties.  相似文献   
463.
Artificially stacked structures of [(infinite layer CaCuO2)k/(superconducting (Cu, C)Ba2CuOx:(Cu, C)-1201)l]m were fabricated on SrCuO2 buffer layer by means of sequential deposition of each block using pulsed laser deposition. Smooth and epitaxial growth all over the deposition cycles of (Cu, C)-1201 and CaCuO2 were confirmed by streak patterns of in situ RHEED. In comparison with (Cu, C)-1201 single layer films, the artificial stacking resulted in a rise of superconducting properties, Tc-onset and Tc(ρ=0) up to 95 K and 65 K, respectively.  相似文献   
464.
New chiral polysiloxanes have been prepared as stationary phases for gas chromatography, with (S)-(–)-t-leucine-t-butylamide, (S)-(–)-t-leucine-(S)-(–)-1-phenylethylamide, (S)-(–)-t-leucine-(S)-(–)-1-(α-naphthyl)ethylamide, (S)-(–)-t-leucine-(R)-( + )-1-phenylethylamide, and (S)-(–)-t-leucine-(R)-( + )-1-(α-naphthyl)ethylamide as selectors. Immobilization is achieved by radical-induced cross-linking with 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane (V4) and dicumyl peroxide (DCUP) as cross-linking reagents and cured at 170°C. Under these conditions, racemization of (S)-(–)-t-leucine is less than 4.5% (R) for 1 h curing, while for polysiloxanes with the conventional (S)-(–)-valine selectors about 20% of R-enantiomers are formed by racemization. In the presence of 5% (w/w) V4 and 6% of DCUP with regard to the phases, 70–80% immobilization is achieved; without V4, the degree of immobilization is about 50% for both the (S)-(–)-t-leucine and (S)-(–)-valine selectors. As the size of the amide moieties of the selectors increases from t-butyl to 1-(α-naphthyl)ethyl, the degree of immobilization decreases. If the curing time is prolonged to 2 h, the extent of racemization increases. The selectivity factors achieved for amino acid enantiomers and similar pharmaceuticals are generally higher than those obtained with the corresponding non-immobilized Chirasil-Val phases.  相似文献   
465.
466.
467.
Friedelin, a pentacyclic triterpene found in the leaves of the Celastraceae species, demonstrates numerous biological activities and is a precursor of quinonemethide triterpenes, which are promising antitumoral agents. Friedelin is biosynthesized from the cyclization of 2,3-oxidosqualene, involving a series of rearrangements to form a ketone by deprotonation of the hydroxylated intermediate, without the aid of an oxidoreductase enzyme. Mutagenesis studies among oxidosqualene cyclases (OSCs) have demonstrated the influence of amino acid residues on rearrangements during substrate cyclization: loss of catalytic activity, stabilization, rearrangement control or specificity changing. In the present study, friedelin synthase from Maytenus ilicifolia (Celastraceae) was expressed heterologously in Saccharomyces cerevisiae. Site-directed mutagenesis studies were performed by replacing phenylalanine with tryptophan at position 473 (Phe473Trp), methionine with serine at position 549 (Met549Ser) and leucine with phenylalanine at position 552 (Leu552Phe). Mutation Phe473Trp led to a total loss of function; mutants Met549Ser and Leu552Phe interfered with the enzyme specificity leading to enhanced friedelin production, in addition to α-amyrin and β-amyrin. Hence, these data showed that methionine 549 and leucine 552 are important residues for the function of this synthase.  相似文献   
468.
The Flory–Huggins interaction parameters χ for 23 gases (He, Ne, Ar, Kr, Xe, H2, N2, O2, N2O, CO2, CH4, C2H4, C2H6, C3H6, C3H8, 1,3-C4H6, four C4H8's, n-C4H10, iso-C4H10, and n-C5H12) in five rubbery polymers (1,2-polybutadiene (PB), poly(ethylene-co-vinyl acetate)) (EVAc), polyethylene (PE), polypropylene (PP), and poly(dimethyl siloxane) (PDMS) were determined from either literature data on Henry's law coefficient and partial molar volume or those on sorptive dilation for each polymer/gas system. Values of χ for the gases increased in the order of PDMS < PP ≡ PB < EVAc ≡ PE. Among the gases except He and H2 whose χ values are not reliable, Ne and Xe have respectively the highest and the lowest values of χ for the polyolefins. The χ values of the hydrocarbons were compared together with previously reported χ values of n-alkanes C3-C10. The dependencies of χ upon concentration and temperature were discussed on the basis of the literature data. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1049–1053, 1997  相似文献   
469.
The morphology and formation process of interpenetrated spherulites of poly(butylene succinate)/poly(vinylidene choloride‐co‐vinyl chloride) (PBSU/PVDCVC) blends were investigated by confocal laser scanning microscopy (CLSM). CLSM images showed that the dense fibrils of PBSU spherulites penetrated into the sparse PVDCVC spherulites. For a blend with PBSU content 50% and crystallization temperature Tc = 368 K, the simultaneous growth of PBSU and PVDCVC spherulites was observed. After PBSU fibrils collided with PVDCVC spherulites, they kept growing through PVDCVC spherulites. For a blend with PBSU content 30% and Tc = 363 K, PBSU started to nucleate after PVDCVC spherulites filled the whole space.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号