首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   2篇
化学   11篇
物理学   2篇
  2021年   2篇
  2016年   1篇
  2015年   1篇
  2009年   1篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  1978年   1篇
  1967年   1篇
排序方式: 共有13条查询结果,搜索用时 93 毫秒
11.
The new heptanuclear ruthenium(II) dendron, [Cl(2)Ru{(micro-2,3dpp)Ru[(micro-2,3-dpp)Ru(bpy)2]2}2](PF6)12 (1; 2,3-dpp=2,3-bis(2'-pyridyl)pyrazine; bpy = 2,2'-bipyridine), was prepared by means of the "complexes as ligands/complexes as metals" synthetic strategy, and its absorption spectrum, redox behavior, and luminescence properties were investigated. Compound 1 is a multicomponent species, which contains three different types of chromophores (namely, the {Cl(2)Ru(micro-2,3-dpp)2} core, the {Ru(micro-2,3dpp)3}2+ intermediate, and the {(bpy)2Ru(micro-2,3-dpp)}2+ peripheral subunits) and several redox-active sites. The new species exhibits very intense absorption bands in the UV region (epsilon value in the 10(5)-10(6) M(-1) cm(-1) range) as a result of spin-allowed ligand-centered (LC) transitions, and intense bands in the visible region (epsilon value in the 10(4)-10(5) M(-1) cm(-1) range) as a result of the various spin-allowed metal-to-ligand charge-transfer (MLCT) transitions. The redox investigation (accomplished by cyclic and differential pulse voltammetry) indicates that 1 undergoes a series of reversible metal-centered oxidation and ligand-centered reduction processes within the potential window investigated (+1.90 / -1.40 V vs. the standard calomel electrode, SCE). The assignment of each absorption bond and redox process to specific subunits of 1 was achieved by comparison with the properties of smaller multinuclear species of the same family, namely [Cl(2)Ru{(micro-2,3-dpp)Ru(bpy)2}2]4+ (2), [(bpy)2Ru(u-2,3-dpp)Ru(bpy)2]4+ (4), and [Ru{(micro-2,3-dpp)Ru(bpy)2}3]4+ (5). The title compound exhibits luminescence both at room temperature in acetonitrile fluid solution and at 77 K in butyronitrile rigid matrix. The emission is attributed to the triplet MLCT (3MLCT) state involving the core {Cl(2)Ru(micro-2,3-dpp)2} subunit. Interestingly, the 3MLCT levels involving the peripheral {(bpy)2Ru(micro-2,3-dpp)}2+ subunits are deactivated by energy transfer to the emitting level, in spite of the presence of interposed high-energy (Ru(micro-2,3-dpp)3}2+ components, which, in other dendrimers, acted as "isolating" subunits toward energy-transfer processes. Ultrafast experiments on 1 and on the parent species 2 and 5 allowed us to rationalize this behavior and highlight that a sequential two-step electron-transfer process can be held responsible for the efficient overall energy transfer, which offers a way to overcome a limitation in antenna metal dendrimers.  相似文献   
12.
The triplet emitting state of an indacene at 774 nm (of 50 ms life-time) was observed for the first time in new ruthenium(II) complexes based on bipartite ligands carrying one or two indacene subunits linked via phenylethynyl connectors to terpyridine fragments.  相似文献   
13.
Relevant properties of gold nanoparticles, such as stability and biocompatibility, together with their peculiar optical and electronic behavior, make them excellent candidates for medical and biological applications. This review describes the different approaches to the synthesis, surface modification, and characterization of gold nanoparticles (AuNPs) related to increasing their stability and available features useful for employment as drug delivery systems or in hyperthermia and photothermal therapy. The synthetic methods reported span from the well-known Turkevich synthesis, reduction with NaBH4 with or without citrate, seeding growth, ascorbic acid-based, green synthesis, and Brust–Schiffrin methods. Furthermore, the nanosized functionalization of the AuNP surface brought about the formation of self-assembled monolayers through the employment of polymer coatings as capping agents covalently bonded to the nanoparticles. The most common chemical–physical characterization techniques to determine the size, shape and surface coverage of AuNPs are described underlining the structure–activity correlation in the frame of their applications in the biomedical and biotechnology sectors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号