首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   272篇
  免费   16篇
化学   261篇
晶体学   1篇
力学   5篇
数学   5篇
物理学   16篇
  2023年   4篇
  2022年   2篇
  2021年   8篇
  2020年   6篇
  2019年   8篇
  2018年   4篇
  2017年   4篇
  2016年   21篇
  2015年   6篇
  2014年   7篇
  2013年   12篇
  2012年   12篇
  2011年   20篇
  2010年   15篇
  2009年   17篇
  2008年   26篇
  2007年   20篇
  2006年   12篇
  2005年   20篇
  2004年   11篇
  2003年   12篇
  2002年   15篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1996年   3篇
  1993年   3篇
  1992年   1篇
  1989年   1篇
  1987年   2篇
  1986年   6篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
排序方式: 共有288条查询结果,搜索用时 390 毫秒
21.
The reaction of equimolar NO with the 16 electron molecule RuHCl(CO)L(2) (L = P(i)Pr(3)) proceeds, via a radical adduct RuHCl(CO)(NO) L(2), onward to form RuCl(NO)(CO)L(2) (X-ray structure determination) and RuHCl(HNO)(CO)L(2), in a 1:1 mole ratio. The HNO ligand, bound by N and trans to hydride, is rapidly degraded by excess NO. The osmium complex behaves analogously, but the adduct has a higher formation constant, permitting determination of its IR spectrum; both MHCl(CO)(NO)L(2) radicals are characterized by EPR spectroscopy, and DFT calculations on the Ru system show it to have a "half-bent" Ru-N-O unit with the spin density mainly on nitrogen. DFT (PBE) energies rule out certain possible mechanistic steps for forming the two products. A survey of the literature leads to the hypothesis that NO should generally be considered as a (neutral) Lewis base (2-electron donor) when it binds to a 16 electron complex which is resistant to oxidation or reduction, and that the resulting N-centered radical has a M-N-O angle of approximately 140 degrees, which distinguishes it from NO(-) (bent at <140 degrees ) and from NO(+) (>170 degrees ).  相似文献   
22.
23.
24.
The spectroscopic, electronic, and DNA-binding characteristics of two novel ruthenium complexes based on the dialkynyl ligands 2,3-bis(phenylethynyl)-1,4,8,9-tetraaza-triphenylene (bptt, 1) and 2,3-bis(4-tert-butyl-phenylethynyl)-1,4,8,9-tetraaza-triphenylene (tbptt, 2) have been investigated. Electronic structure calculations of bptt reveal that the frontier molecular orbitals are localized on the pyrazine-dialkynyl portion of the free ligand, a property that is reflected in a red shift of the lowest energy electronic transition (1: λ(max) = 393 nm) upon substitution at the terminal phenyl groups (2: λ(max) = 398 nm). Upon coordination to ruthenium, the low-energy ligand-centered transitions of 1 and 2 are retained, and metal-to-ligand charge transfer transitions (MLCT) centered at λ(max) = 450 nm are observed for [Ru(phen)(2)bptt](2+)(3) and [Ru(phen)(2)tbptt](2+)(4). The photophysical characteristics of 3 and 4 in ethanol closely parallel those observed for [Ru(bpy)(3)](2+) and [Ru(phen)(3)](2+), indicating that the MLCT excited state is primarily localized within the [Ru(phen)(3)](2+) manifold of 3 and 4, and is only sparingly affected by the extended conjugation of the bptt framework. In an aqueous environment, 3 and 4 possess notably small luminescence quantum yields (3: ?(H(2)O) = 0.005, 4: ?(H(2)O) = 0.011) and biexponential decay kinetics (3: τ(1) = 40 ns, τ(2) = 230 ns; 4: τ(1) ~ 26 ns, τ(2) = 150 ns). Addition of CT-DNA to an aqueous solution of 3 causes a significant increase in the luminescence quantum yield (?(DNA) = 0.045), while the quantum yield of 4 is relatively unaffected (?(DNA) = 0.013). The differential behavior demonstrates that tert-butyl substitution on the terminal phenyl groups inhibits the ability of 4 to intercalate with DNA. Such changes in intrinsic luminescence demonstrate that 3 binds to DNA via intercalation (K(b) = 3.3 × 10(4) M(-1)). The origin of this light switch behavior involves two competing (3)MLCT states similar to that of the extensively studied light switch molecule [Ru(phen)(2)dppz](2+). The solvent- and temperature-dependence of the luminescence of 3 reveal that the extended ligand aromaticity lowers the energy of the (3)ππ* excited state into competition with the emitting (3)MLCT state. Interconversion between these two states plays a significant role in the observed photophysics and is responsible for the dual emission in aqueous environments.  相似文献   
25.
Site‐directed spin labeling and EPR spectroscopy offer accurate, sensitive tools for the characterization of structure and function of macromolecules and their assemblies. A new rigid spin label, spirocyclohexyl nitroxide α‐amino acid and its N‐(9‐fluorenylmethoxycarbonyl) derivative, have been synthesized, which exhibit slow enough spin‐echo dephasing to permit accurate distance measurements by pulsed EPR spectroscopy at temperatures up to 125 K in 1:1 water/glycerol and at higher temperatures in matrices with higher glass transition temperatures. Distance measurements in the liquid nitrogen temperature range are less expensive than those that require liquid helium, which will greatly facilitate applications of pulsed EPR spectroscopy to the study of structure and conformation of peptides and proteins.  相似文献   
26.
27.
28.
29.
The synthesis of a new series of free‐base, NiII and ZnII 2,3,12,13‐tetra(ethynyl)‐5,10,15,20‐tetraphenyl porphyrins is described. Upon heating, two of the four ethynyl moieties undergo Bergman cyclization to afford the monocyclized 2,3‐diethynyl‐5,20‐diphenylpiceno[10,11,12,13,14,15‐jklmn]porphyrin in 30 %, 10 %, and trace yields, respectively. The structures of all products were investigated by using quantum chemical calculations and the free‐base analogue was isolated and crystallized; all compounds show significant deviation from the idealized planar structure. No fully‐cyclized bispiceno[20,1,2,3,4,5,10,11,12,13,14,15‐fghij]porphyrin was isolated from the reaction mixture. To understand why only two of the four enthynyl groups undergo Bergman cyclization, the reaction coordinates were examined by using DFT at the PWPW91/cc‐pVTZ(‐f) level coupled to a continuum solvation model. The barrier to cyclization of the second pair of ethynyl groups was found to be 5.5 kcal mol?1 higher than the first, suggesting a negative cooperative effect and significantly slower rate for the second cyclization. Cyclization reactions for model porphyrin–enediynes with ethene‐ and H‐functionality substitutions at the meso‐phenyl rings were also examined, and found to have a similar barrier to diradical formation for the second cyclization event as for the first in these highly planar molecules. By enforcing an artificial 30° cant in two of the pyrrole rings of the porphyrin, the second barrier was increased by 2 kcal mol?1 in the ethene model system; this suggests that the disruption of the π conjugation of the extended porphyrin structure is the cause of the increased barrier to the second cyclization event.  相似文献   
30.
Spore photoproduct (SP) is the exclusive DNA photodamage product found in bacterial endospores. Its photoformation and repair by a metalloenzyme spore photoproduct lyase (SPL) composes the unique SP biochemistry. Despite the fact that the SP was discovered almost 50 years ago, its crystal structure is still unknown and the lack of structural information greatly hinders the study of SP biochemistry. Employing a formacetal linker and organic synthesis, we successfully prepared a dinucleotide SP isostere 5R-CH(2) SP, which contains a neutral CH(2) moiety between the two thymine residues instead of a phosphate. The neutral linker dramatically facilitates the crystallization process, allowing us to obtain the crystal structure for this intriguing thymine dimer half a century after its discovery. Further ROESY spectroscopic, DFT computational, and enzymatic studies of this 5R-CH(2) SP compound prove that it possesses similar properties with the 5R-SP species, suggesting that the revealed structure truly reflects that of SP generated in Nature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号